徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

酉群

指数 酉群

酉群,又叫幺正群,是李群的一种。在群论中,n阶酉群(unitary group)是n×n 酉矩阵组成的群,群乘法是矩阵乘法。酉群记作U(n),是一般线性群GL(n, C)的一个子群。 在最简单情形n.

52 关系: 域扩张基本群半直积单群可对角化矩阵合同矩阵多項式复数子商完全群对称双线性形式對角矩陣中心 (群论)一般线性群广义正交群交集交换图表度量张量弗拉基米爾·阿諾爾德單位矩陣商空间共轭复数共轭转置矩陣乘法紧空间绝对值美國數學學會群同態群论特殊酉群相对拓扑道路 (拓扑学)非阿贝尔群行列式辛群连通空间舒尔引理酉矩阵G-结构极大紧子群李代數李群核 (代数)欧几里得空间正合序列正交群正规子群殆复流形...海涅-博雷尔定理斜埃尔米特矩阵 扩展索引 (2 更多) »

域扩张

域扩张(field extensions)是数学分支抽象代数之域论中的主要研究对象,基本想法是从一个基域开始以某种方式构造包含它的“更大”的域。域扩张可以推广为环扩张。.

新!!: 酉群和域扩张 · 查看更多 »

基本群

在代數拓撲中,基本群(或稱龐加萊群)是一個重要的同倫不變量。帶點拓撲空間的基本群是所有從該點出發的環路的同倫等價類,群運算由環路的銜接給出。 基本群能用以研究兩個空間是否同胚,也能分類一個連通空間的覆疊空間(至多差一個同構)。 基本群的推廣之一是同倫群。.

新!!: 酉群和基本群 · 查看更多 »

半直积

在數學中,特別是叫做群論的抽象代數領域中,半直積(semidirect product)是從其中一個是正規子群的兩個子群形成一個群的特定方法。半直積是直積的推廣。半直積是作為集合的笛卡爾積,但帶有特定的乘法運算。.

新!!: 酉群和半直积 · 查看更多 »

单群

数学上的单群(Simple group)是指没有非平凡正规子群的群。任意一个群如果不是单群,都可以作进一步分解而得到一个非平凡正规子群及对应的商群。这个过程可以一直做下去。对于有限群,若尔当-赫尔德定理表明,这个分解过程可以得到该群的唯一的合成列(最多相差一个置换)。在2008年完成的有限單群分類工作是数学史上一个重要的里程碑。.

新!!: 酉群和单群 · 查看更多 »

可对角化矩阵

可对角化矩阵是线性代数和矩阵论中重要的一类矩阵。如果一个方块矩阵 A 相似于对角矩阵,也就是说,如果存在一个可逆矩阵 P 使得 P −1AP 是对角矩阵,则它就被称为可对角化的。如果 V 是有限维度的向量空间,则线性映射 T: V → V 被称为可对角化的,如果存在 V 的一个基,T 关于它可被表示为对角矩阵。对角化是找到可对角化矩阵或映射的相应对角矩阵的过程。 可对角化矩阵和映射在线性代数中有重要价值,因为对角矩阵特别容易处理: 它们的特征值和特征向量是已知的,且其次方可通过計算对角元素同样的次方来獲得。 若尔当-谢瓦莱分解表达一个算子为它的对角部分与它的幂零部分的和。.

新!!: 酉群和可对角化矩阵 · 查看更多 »

合同矩阵

在线性代数,特别是二次型理论中,常常用到矩阵间的合同关系。两个矩阵A和B是合同的,如果有同数域上的可逆矩阵 P,使得 其中的P^\mathrm表示矩阵P的转置矩阵。 对于二次型的矩阵表示来说,做一次非退化的线性替换相当于将二次型的矩阵变为一个与其合同的矩阵。.

新!!: 酉群和合同矩阵 · 查看更多 »

多項式

多项式(Polynomial)是代数学中的基础概念,是由称为未知数的变量和称为系数的常数通过有限次加减法、乘法以及自然数幂次的乘方运算得到的代数表达式。多项式是整式的一种。未知数只有一个的多项式称为一元多项式;例如x^2-3x+4就是一个一元多项式。未知数不止一个的多项式称为多元多项式,例如就是一個三元多项式。 可以写成只由一项构成的多项式也称为单项式。如果一项中不含未知数,则称之为常数项。 多项式在数学的很多分支中乃至许多自然科学以及工程学中都有重要作用。.

新!!: 酉群和多項式 · 查看更多 »

复数

#重定向 复数 (数学).

新!!: 酉群和复数 · 查看更多 »

子商

在抽象代數及範疇論中,子商是很常用的概念。這是子結構(例如子群、子模、子表示)與商結構(例如商群、商模、商表示)的推廣。 固定一個範疇 \mathcal。若 \mathcal 中的對象 X 能表成某對象 Y 的子對象之商,則稱 X 為 Y 的子商。在群與阿貝爾範疇的框架下皆可定義子商。在群論中,有時也將子商稱為截面。 Z Z.

新!!: 酉群和子商 · 查看更多 »

完全群

完全群是一抽象代數名詞,可以指:.

新!!: 酉群和完全群 · 查看更多 »

对称双线性形式

对称双线性形式是在向量空间上的对称双线性形式。它们在正交极性和二次曲面的研究中非常重要。.

新!!: 酉群和对称双线性形式 · 查看更多 »

對角矩陣

對角矩陣(diagonal matrix)是一個主對角線之外的元素皆為0的矩陣。對角線上的元素可以為0或其他值。因此n行n列的矩陣\mathbf.

新!!: 酉群和對角矩陣 · 查看更多 »

中心 (群论)

在抽象代数中,群G的中心Z\left(G\right)是所有在G中和G的所有元素可交换的元素的集合,也就是: 注意Z\left(G\right)是一个G的子群:若x和y在Z\left(G\right)中,则\left(xy\right)g.

新!!: 酉群和中心 (群论) · 查看更多 »

一般线性群

在數學中,n 次一般線性群是 n×n 可逆矩陣的集合,和與之一起的普通矩陣乘法運算。這形成了一個群,因為兩個可逆矩陣的乘積也是可逆矩陣,而可逆矩陣的逆元還是可逆矩陣。叫這個名字是因為可逆矩陣的縱列是線性無關的,因此它們定義的向量/點是在一般線性位置上的,而在一般線性群中的矩陣把在一般線性位置上的點變換成在一般線性位置上的點。 为了使定义更明确,必需規定哪類對象可以成為矩陣的元素。例如,在 R(實數集)上的一般線性群是實數的 n×n 可逆矩陣的群,并指示為 GLn(R)或 GL(n, R)。 更一般的說,在任何域 F(比如複數集)或環 R(比如整數集的環)上的 n 次一般線性群是帶有來自 F(或 R)的元素的 n×n 可逆矩陣的群,帶有矩陣乘法作為群運算。這裡的環被假定為符合結合律和有乘法單位元的。典型符號是 GLn(F)或 GL(n, F),如果域是自明的也可簡寫為 GL(n)。 更一般的說,向量空間的一般線性群 GL(V)仍是抽象自同構群,不必需寫為矩陣。 '''特殊線性群''',寫為 SL(n, F)或 SLn(F),是由行列式.

新!!: 酉群和一般线性群 · 查看更多 »

广义正交群

数学上,广义正交群或称伪正交群、不定正交群O(p,q)是所有保持n.

新!!: 酉群和广义正交群 · 查看更多 »

交集

数学上,两个集合A和B的交集是含有所有既属于A又属于B的元素,而没有其他元素的集合。.

新!!: 酉群和交集 · 查看更多 »

交换图表

在数学领域,尤其是范畴论中,通常使用以对象为顶点、态射为边的交换图表来直观的表达一些性质,尤其是泛性质。 在图表中,复合连接任意两个对象的不同路径上的态射,所得的结果均相等,则称此图表可交换。同时,按照惯例,实线通常表示任意给定的态射,虚线则表示存在或唯一存在的态射。.

新!!: 酉群和交换图表 · 查看更多 »

度量张量

在黎曼幾何裡面,度量張量(英語:Metric tensor)又叫黎曼度量,物理学译为度規張量,是指一用來衡量度量空间中距離,面積及角度的二階張量。 當选定一個局部坐標系統x^i,度量張量為二階張量一般表示為 \textstyle ds^2.

新!!: 酉群和度量张量 · 查看更多 »

弗拉基米爾·阿諾爾德

弗拉基米爾·伊戈列維奇·阿諾爾德(Влади́мир И́горевич Арно́льд,),俄國數學家,生於蘇聯敖德薩(今烏克蘭境內)。1957年他19歲時就解決了希爾伯特第十三問題,此後對多個數學領域都有重大貢獻,包括動力系統理論、、拓撲學、代數幾何、古典力學、。他最著名的成果是關於可積哈密頓系統穩定性的,即。 他的學術成就深得肯定,獲頒多個獎項,如1982年的克拉福德獎,2001年的沃爾夫數學獎,2008年的邵逸夫獎等。.

新!!: 酉群和弗拉基米爾·阿諾爾德 · 查看更多 »

圆 (Circle),根據歐幾里得的《几何原本》定義,是在同一平面内到定点的距离等于定长的点的集合。此外,圆的第二定义是:「平面内一动点到两定点的距离的比,等于一个常数,则此动点的轨迹是圆。.

新!!: 酉群和圆 · 查看更多 »

單位矩陣

在線性代數中,n階單位矩陣,是一個n \times n的方形矩陣,其主對角線元素為1,其餘元素為0。單位矩陣以I_n表示;如果階數可忽略,或可由前後文確定的話,也可簡記為I(或者E)。(在部分領域中,如量子力學,單位矩陣是以粗體字的1表示,否則無法與I作區別。) I_1.

新!!: 酉群和單位矩陣 · 查看更多 »

商空间

在拓扑学及其相关数学领域,一个商空间(quotient space,也称为等化空间identification space)直观上说是将一个给定空间的一些点等同或“黏合在一起”;由一个等价关系确定哪些点是等同的。这是从给定空间构造新空间的常见方法。.

新!!: 酉群和商空间 · 查看更多 »

共轭复数

在數學中,複數的複共軛(常簡稱共軛)是對虛部變號的運算,因此一個複數 的複共軛是 舉例明之: 在複數的極坐標表法下,複共軛寫成 這點可以透過歐拉公式驗證 將複數理解為複平面,則複共軛無非是對實軸的反射。複數z的複共軛有時也表為z^*。.

新!!: 酉群和共轭复数 · 查看更多 »

共轭转置

矩阵A的共轭转置A^*(又称埃尔米特共轭、埃尔米特转置)定义为: 其中(\cdot)_表示矩阵i行j列上的元素,\overline表示标量的复共轭。 这一定义也可以写作: 其中A^\mathrm \,\!是矩阵A的转置,\overline\,\!表示对矩阵A中的元素取复共轭。 通常用以下记号表示矩阵A的共轭转置:.

新!!: 酉群和共轭转置 · 查看更多 »

矩陣乘法

這篇文章給出多種矩陣相乘方法的綜述。.

新!!: 酉群和矩陣乘法 · 查看更多 »

紧空间

在数学中,如果欧几里得空间Rn的子集是闭合的并且是有界的,那么称它是--的。例如,在R中,闭合单位区间是紧致的,但整数集合Z不是(它不是有界的),半开区间.

新!!: 酉群和紧空间 · 查看更多 »

绝对值

絕對值用來表示一個數至原點的距離之大小。絕對值的概念也可以定義在複數、有序環以及域上。.

新!!: 酉群和绝对值 · 查看更多 »

美國數學學會

美國數學學會(American Mathematical Society,缩写作 AMS)是美國進行數學研究和教育的組織,有不少出版品。前往英國時,受到倫敦數學學會的啟發而於1888年成立AMS。 AMS以TeX為基礎發展了。 AMS出版《數學評論》(Mathematical Reviews),這是數學出版品的評論資料庫。.

新!!: 酉群和美國數學學會 · 查看更多 »

在數學中,群是由一個集合以及一個二元運算所組成的,符合下述四个性质(称为“群公理”)的代數結構。这四个性质是封闭性、結合律、單位元和对于集合中所有元素存在逆元素。 很多熟知的數學結構比如數系統都遵从群公理,例如整數配備上加法運算就形成一個群。如果将群公理的公式從具体的群和其運算中抽象出來,就使得人们可以用靈活的方式来處理起源于抽象代數或其他许多数学分支的實體,而同时保留對象的本質結構性质。 群在數學內外各個領域中是無處不在的,这使得它們成為當代數學的组成的中心原理。 群與對稱概念共有基礎根源。對稱群把幾何物體的如此描述物体的對稱特征:它是保持物體不變的變換的集合。這種對稱群,特別是連續李群,在很多學術學科中扮演重要角色。例如,矩陣群可以用來理解在狹義相對論底層的基本物理定律和在分子化學中的對稱現象。 群的概念引發自多項式方程的研究,由埃瓦里斯特·伽罗瓦在1830年代開創。在得到來自其他領域如數論和幾何学的貢獻之后,群概念在1870年左右形成并牢固建立。現代群論是非常活躍的數學學科,它以自己的方式研究群。為了探索群,數學家發明了各種概念來把群分解成更小的、更好理解的部分,比如子群、商群和單群。除了它們的抽象性質,群理論家還從理論和計算兩種角度來研究具體表示群的各種方式(群的表示)。對有限群已經發展出了特別豐富的理論,這在1983年完成的有限簡單群分類中達到頂峰。从1980年代中叶以来,将有限生成群作为几何对象来研究的几何群论,成为了群论中一个特别活跃的分支。.

新!!: 酉群和群 · 查看更多 »

群同態

在數學中,給定兩個群(G, *)和(H,·),從 (G, *)到 (H,·)的群同態是函數h: G → H使得對於所有G中的u和v下述等式成立 在這裡,等號左側的群運算*,是G中的運算;而右側的運算·是H中的運算。 從這個性質,可推導出h將G的單位元eG映射到H的單位元eH,并且它還在h(u-1).

新!!: 酉群和群同態 · 查看更多 »

群论

在数学和抽象代数中,群论研究名为群的代数结构。 群在抽象代数中具有基本的重要地位:许多代数结构,包括环、-zh-hant:體;zh-hans:域-和向量空间等可以看作是在群的基础上添加新的运算和公理而形成的。群的概念在数学的许多分支都有出现,而且群论的研究方法也对抽象代数的其它分支有重要影响。线性代数群(linear algebraic groups)和李群作为群论的分支,在经历了重大的发展之后,已经形成相对独立的研究领域。 群论的重要性还体现在物理学和化学的研究中,因为许多不同的物理结构,如晶体结构和氢原子结构可以用群论方法来进行建模。于是群论和相关的群表示论在物理学和化学中有大量的应用。 群论中的重要结果,有限单群分类是20世纪数学最重要的结果之一。该定理的证明是集体努力的结果,它的证明出现在1960年和1980年之间出版的超过10,000页的期刊上。.

新!!: 酉群和群论 · 查看更多 »

特殊酉群

在数学中,n 阶特殊酉群(special unitary group),记作 SU(n),是行列式为1 的 n×n -zh-hans:酉矩阵;zh-hant:么正矩阵-组成的群(一般酉矩阵的行列式是绝对值为1的复数)。群运算是矩阵乘法。特殊酉群是由 n×n 酉矩阵组成的酉群 U(n) 的一个子群,酉群又是一般线性群 GL(n, C) 的一个子群。 群 SU(n) 在粒子物理中标准模型中有广泛的应用,特别是 SU(2) 在电弱相互作用与 SU(3) 在量子色动力学中。 最简单的情形 SU(1),是平凡群,只有一个元素。群 SU(2) 同构于範數为 1 的四元数,从而微分同胚于三维球面。因为单位四元数可表示三维空间中的旋转(差一个符号),我们有一个满同态从 SU(2) 到旋转群 SO(3),其核为 \。.

新!!: 酉群和特殊酉群 · 查看更多 »

相对拓扑

#重定向 相對化拓撲.

新!!: 酉群和相对拓扑 · 查看更多 »

道路 (拓扑学)

在数学中,拓扑空间 X 中一条道路(path)是从单位区间 I.

新!!: 酉群和道路 (拓扑学) · 查看更多 »

非阿贝尔群

数学里的非阿贝尔群,也称 非交换群,是一種群。它由自身的集合G和二元運算 * 構成,在符合群的定義之餘,G至少存在两个元素a和b,满足条件a*b \neq b*a 。 非阿贝尔是为了與阿贝尔群區分開來,其中所有的元素都满足交换律。 非阿贝尔群在数学和物理中广泛存在。最小的非阿贝尔群是4阶二面体群。物理中的常见例子是三维中的旋转群(绕不同的轴的旋转交换顺序会造成不同的结果),這也称作四元群。 连续群和离散群都是非阿贝尔的。 大多数有趣的李群都是非阿贝尔的,它们在规范场论中扮演着重要角色。.

新!!: 酉群和非阿贝尔群 · 查看更多 »

行列式

行列式(Determinant)是数学中的一個函數,将一个n \times n的矩陣A映射到一個純量,记作\det(A)或|A|。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现线性自同态和向量组的行列式的定义。 行列式的特性可以被概括为一个交替多线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。.

新!!: 酉群和行列式 · 查看更多 »

辛群

在數學中,辛群可以指涉兩類不同但關係密切的群。在本條目中,我們分別稱之為Sp(2n,F)與Sp(n)。後者有時也被稱作緊緻辛群以資區別。許多作者偏好不同的記法,通常是差個二的倍數。本條目採用的記法與矩陣的大小相稱。.

新!!: 酉群和辛群 · 查看更多 »

连通空间

拓扑空间X称为是连通的。当且仅当以下叙述之一成立:.

新!!: 酉群和连通空间 · 查看更多 »

舒尔引理

在数学中,舒尔引理(Schur's lemma)是群与代数的表示论中一个初等但非常有用的命题。在群的情形是说,如果M与N是群G的两个有限维不可约表示,φ是从M到N的与群作用可交换的线性映射,那么φ 可逆或φ.

新!!: 酉群和舒尔引理 · 查看更多 »

酉矩阵

若一n行n列的複数矩阵U满足 其中I_n\,为n阶单位矩阵,U^\dagger \,为U的共轭转置,则U称为--(又译作--、--。英文:Unitary Matrix, Unitary是歸一或單位的意思)。即,矩阵U为酉矩阵,当且仅当其共轭转置U^\dagger \,为其逆矩阵: 若酉矩阵的元素都是实数,其即为正交矩阵。与正交矩阵G不会改变两个实向量的内积类似, 酉矩阵U不改变两个复向量的内积: 若U \,为n阶方阵,则下列条件等价:.

新!!: 酉群和酉矩阵 · 查看更多 »

G-结构

在微分几何中,对一个给定的结构群 G,n 维流形 M 上一个 G-结构是 M 的切标架丛 FM(或 GL(M))的一个 G-子丛。 G-结构的概念包括了许多流形上其它结构,其中一些是用张量场定义的。例如,对正交群,一个 O(n)-结构定义了一个黎曼度量;而对特殊线性群,一个 SL(n,R)-结构就是一个体积形式;对平凡群,一个 -结构由流形的一个绝对平行化组成。 一些流形上的结构,比如複结构,辛结构,或 凯勒结构,都是 G-结构带上附加的可积性条件。 物理学中的术语是规范群。.

新!!: 酉群和G-结构 · 查看更多 »

极大紧子群

数学中,一个拓扑群 G 的极大紧子群 K 是一个在子空间拓扑下是紧空间的子群,且是这些子群中的极大元。 一个一般李群不一定有极大紧子群,但半单李群却一定存在,而且他们在理论中有重要地位。极大紧子群一般不是惟一的,但在相差一个共轭的意义下是惟一的——他们是本质惟一的。.

新!!: 酉群和极大紧子群 · 查看更多 »

李代數

数学上,李代数是一个代数结构,主要用于研究象李群和微分流形之类的几何对象。李代数因研究无穷小变换的概念而引入。“李代数”(以索菲斯·李命名)一词是由赫尔曼·外尔在1930年代引入的。在旧文献中,无穷小群指的就是李代数。.

新!!: 酉群和李代數 · 查看更多 »

李群

數學中,李群(Lie group,)是具有群结构的光滑微分流形,其群作用與微分结构相容。李群的名字源於索菲斯·李的姓氏,以其為連續變換群奠定基礎。1893年,法文名詞groupes de Lie首次出現在李的學生Arthur Tresse的論文第三頁中。.

新!!: 酉群和李群 · 查看更多 »

核 (代数)

在归入线性代数的各种数学分支中,同态的核测量同态不及于单射的程度。 核的定义在不同上下文中采用不同的形式。但是在所有形式中,同态的核是平凡的(在与那个上下文有关的意义上),当且仅当这个同态是单射。同态基本定理(或第一同构定理)是应用于核所定义的商代数的采用了各种形式的一个定理。.

新!!: 酉群和核 (代数) · 查看更多 »

欧几里得空间

欧几里得几何是在约公元前300年,由古希腊数学家欧几里得建立的角和空间中距离之间联系的法则。欧几里得首先开发了处理平面上二维物体的“平面几何”,他接着分析三维物体的“立体几何”,所有欧几里得的公理被编排到幾何原本。 这些数学空间可以被扩展来应用于任何有限维度,而这种空间叫做 n维欧几里得空间(甚至简称 n 维空间)或有限维实内积空间。 这些数学空间还可被扩展到任意维的情形,称为实内积空间(不一定完备), 希尔伯特空间在高等代数教科书中也被称为欧几里得空间。 为了开发更高维的欧几里得空间,空间的性质必须非常仔细的表达并被扩展到任意维度。 尽管结果的数学非常抽象,它却捕获了我们熟悉的欧几里得空间的根本本质,根本性质是它的平面性。 另存在其他種類的空间,例如球面非欧几里得空间,相对论所描述的四维时空在重力出现的时候也不是欧几里得空间。.

新!!: 酉群和欧几里得空间 · 查看更多 »

正合序列

在數學裡,尤其是在群論、環與模理論、同調代數及微分幾何等數學領域中,正合序列(或釋作正合列或恰當序列)是指一個由對象及其間的態射所組成的序列,該序列中的每一個態射的像都恰好是其下一個態射的核。正合序列可以為有限序列或無限序列。 正合序列於同調代數中居於核心地位,其中特別重要的一類是短正合序列。.

新!!: 酉群和正合序列 · 查看更多 »

正交群

数学上,数域F上的n阶正交群,记作O(n,F),是F上的n×n 正交矩阵在矩阵乘法下构成的群。它是一般线性群GL(n,F)的子群,由 这里QT是Q的转置。实数域上的经典正交群通常就记为O(n)。 更一般地,F上一个非奇异二次型的正交群是保持二次型不变的矩阵构成的群。嘉当-迪奥多内定理描述了这个正交群的结构。 每个正交矩阵的行列式为1或−1。行列式为1的n×n正交矩阵组成一个O(n,F)的正规子群,称为特殊正交群SO(n,F)。如果F的特征为2,那么1.

新!!: 酉群和正交群 · 查看更多 »

正规子群

在抽象代数中,正规子群或不变子群指一类特殊的子群。由正规子群,可以引导出商群的概念。 埃瓦里斯特·伽罗瓦是最早认识到正规子群的重要性的人。.

新!!: 酉群和正规子群 · 查看更多 »

殆复流形

数学中,一个殆複流形(almost complex manifold)是在每个切空间上带有一个光滑线性複结构的光滑流形。此结构的存在性是一个流形成为複流形的必要条件,但非充分条件。即每个複流形是一个殆複流形,反之则不然。殆複结构在辛几何中有重要应用。 此概念由埃雷斯曼与霍普夫于1940年代引入。.

新!!: 酉群和殆复流形 · 查看更多 »

海涅-博雷尔定理

在数学分析中,海涅-博雷尔定理(Heine–Borel theorem)或有限覆盖定理、博雷尔-勒贝格定理(),以 和埃米尔·博雷尔命名,斷言: 对于欧几里得空间 Rn 的子集 S,下列两个陈述是等价的.

新!!: 酉群和海涅-博雷尔定理 · 查看更多 »

斜埃尔米特矩阵

一个方块矩阵A是斜埃尔米特矩阵或反埃尔米特矩阵,如果它的共轭转置A*也是它的负数。也就是说,它满足以下的关系: 或者,如果A.

新!!: 酉群和斜埃尔米特矩阵 · 查看更多 »

重定向到这里:

U(n)Unitary group一般酉群么正群幺正群

传出传入
嘿!我们在Facebook上吧! »