我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

道路 (拓扑学)

指数 道路 (拓扑学)

在数学中,拓扑空间 X 中一条道路(path)是从单位区间 I.

目录

  1. 28 关系: 基本群单位圆區間同倫同倫群同构坐標系塞弗特-范坎彭定理实数轴交換律二元运算代数拓扑商空间等价关系等价类範疇 (數學)结合律環圈连通空间范畴论自同构自同态連續函數 (拓撲學)数学拓扑空间曲线态射

  2. 同伦论

基本群

在代數拓撲中,基本群(或稱龐加萊群)是一個重要的同倫不變量。帶點拓撲空間的基本群是所有從該點出發的環路的同倫等價類,群運算由環路的銜接給出。 基本群能用以研究兩個空間是否同胚,也能分類一個連通空間的覆疊空間(至多差一個同構)。 基本群的推廣之一是同倫群。.

查看 道路 (拓扑学)和基本群

单位圆

在数学中,单位圆是指半径为单位长度的圆,通常为欧几里得平面直角坐标系中圆心为(0,0)、半径为1的圆。单位圆对于三角函数和复数的坐标化表示有着重要意义。单位圆通常表示为S1。多维空间中,单位圆可推广为单位球。 如果单位圆上的点 (x, y)位于第一象限,那么x与y是斜边长度为1的直角三角形的两条边,根据勾股定理,x与y满足方程: 由于对于所有的x来说x2.

查看 道路 (拓扑学)和单位圆

區間

在數學上,區間是某個範圍的數的搜集,一般以集合形式表示。.

查看 道路 (拓扑学)和區間

同倫

在數學中,同倫(Homotopy)的概念在拓撲上描述了兩個對象間的「連續變化」。.

查看 道路 (拓扑学)和同倫

同倫群

在數學中,同倫群是拓撲空間的一種同倫不變量。同倫群的研究是同倫理論的基石之一,一般空間的同倫群極難計算,即使對球面 S^n 的情形,至今也沒有完整結果。.

查看 道路 (拓扑学)和同倫群

同构

在抽象代数中,同构(isomorphism)指的是一个保持结构的双射。在更一般的范畴论语言中,同构指的是一个态射,且存在另一个态射,使得两者的复合是一个恒等态射。 正式的表述是:同构是在数学对象之间定义的一类映射,它能揭示出在这些对象的属性或者操作之间存在的关系。若两个数学结构之间存在同构映射,那么这两个结构叫做是同构的。一般来说,如果忽略掉同构的对象的属性或操作的具体定义,单从结构上讲,同构的对象是完全等价的。.

查看 道路 (拓扑学)和同构

坐標系

坐標系是數學或物理學用語,定義如下: 对于一个n维系统,能够使每一个点和一组(n个)标量构成一一对应的系统。 坐標系可以用一個有序多元组表示一個點的位置。一般常用的坐標系,各維坐標的數字均為實數,但在高等數學中坐標的數字可能是複數,甚至是或是其他抽象代數中的元素(如交换环)。坐標系可以使幾何學的問題轉換為數字的問題,反之亦然,是解析幾何學的基礎。 描述地理位置時所用的經度及緯度就是坐標系統的一種。在物理學中,描述一系統在空間中運動的參考坐標系統則稱作參考系。.

查看 道路 (拓扑学)和坐標系

塞弗特-范坎彭定理

代數拓撲中的塞弗特-范坎彭(Seifert–van Kampen)定理,將一個拓撲空間的基本群,用覆蓋這空間的兩個開且路徑連通的子空間的基本群來表示。.

查看 道路 (拓扑学)和塞弗特-范坎彭定理

实数轴

實數軸可以指:.

查看 道路 (拓扑学)和实数轴

交換律

交換律(Commutative property)是被普遍使用的一個數學名詞,意指能改變某物的順序而不改變其最終結果。交換律是大多數數學分支中的基本性質,而且許多的數學證明需要倚靠交換律。簡單運算的交換律許久都被假定存在,且沒有給定其一特定的名稱,直到19世紀,數學家開始形式化數學理論之後,交換律才被聲明。.

查看 道路 (拓扑学)和交換律

二元运算

二元运算属于数学运算的一种。二元运算需要三个元素:二元运算符以及该运算符作用的两个变量。如四则运算的加、减、乘、除均属于二元运算。 如在运算1 + 2之中,二元运算符为“+”,而该运算符作用的操作数分别为1与2。 二元运算只是二元函数的一种,由于它被广泛应用于各个领域,因此受到比其它函数更高的重视。.

查看 道路 (拓扑学)和二元运算

代数拓扑

代数拓扑(Algebraic topology)是使用抽象代数的工具来研究拓扑空间的数学分支。.

查看 道路 (拓扑学)和代数拓扑

商空间

在拓扑学及其相关数学领域,一个商空间(quotient space,也称为等化空间identification space)直观上说是将一个给定空间的一些点等同或“黏合在一起”;由一个等价关系确定哪些点是等同的。这是从给定空间构造新空间的常见方法。.

查看 道路 (拓扑学)和商空间

等价关系

等價關係(equivalence relation)即设R是某個集合A上的一个二元关系。若R满足以下條件:.

查看 道路 (拓扑学)和等价关系

等价类

在数学中,假設在一个集合X上定義一个等价关系(用 \sim來表示),则X中的某個元素a的等价类就是在X中等价于a的所有元素所形成的子集: 等价类的概念有助于从已经构造了的集合构造新集合。在X中的给定等价关系 \sim的所有等价类的集合表示为X/ \sim并叫做X除以\sim的商集。这种运算可以(实际上非常不正式的)被认为是输入集合除以等价关系的活动,所以名字“商”和这种记法都是模仿的除法。商集类似于除法的一个方面是,如果X是有限的并且等价类都是等势的,则X/ \sim的序是X的序除以一个等价类的序的商。商集被认为是带有所有等价点都识别出来的集合X。 对于任何等价关系,都有从X到X/ \sim的一个规范投影映射\pi,给出为\pi(x).

查看 道路 (拓扑学)和等价类

範疇 (數學)

在範疇論中,範疇此一概念代表著一堆數學實體和存在於這些實體間的關係。對範疇的研究允許其公式化抽象結構及保有結構的數學運算等概念。實際上,範疇在現代數學的每個分支之中都會出現,而且是統合這些領域的核心概念。有關範疇自身的研究被稱做是範疇論。.

查看 道路 (拓扑学)和範疇 (數學)

结合律

在數學中,結合律(associative laws)是二元運算可以有的一個性質,意指在一個包含有二個以上的可結合運算子的表示式,只要運算元的位置沒有改變,其運算的順序就不會對運算出來的值有影響。亦即,重新排列表示式中的括號並不會改變其值。例如: 上式中的括號雖然重新排列了,但表示式的值依然不變。當這在任何實數的加法上都成立時,我們說「實數的加法是一個可結合的運算」。 結合律不應該和交換律相混淆。交換律會改變表示式中運算元的位置,而結合律則不會。例如: 是一個結合律的例子,因為其中的括號改變了(且因此運算子在運算中的順序也改變了),而運算元5、2、1則在原來的位置中。再來, 則不是一個結合律的例子,因為運算元2和5的位置互換了。 可結合的運算在數學中是很常見的,且事實上,大多數的代數結構確實會需要它們的二元運算是可結合的。不過,也有許多重要且有趣的運算是不可結合的;其中一個簡單的例子為向量積。.

查看 道路 (拓扑学)和结合律

在數學中,群是由一個集合以及一個二元運算所組成的,符合下述四个性质(称为“群公理”)的代數結構。这四个性质是封闭性、結合律、單位元和对于集合中所有元素存在逆元素。 很多熟知的數學結構比如數系統都遵从群公理,例如整數配備上加法運算就形成一個群。如果将群公理的公式從具体的群和其運算中抽象出來,就使得人们可以用靈活的方式来處理起源于抽象代數或其他许多数学分支的實體,而同时保留對象的本質結構性质。 群在數學內外各個領域中是無處不在的,这使得它們成為當代數學的组成的中心原理。 群與對稱概念共有基礎根源。對稱群把幾何物體的如此描述物体的對稱特征:它是保持物體不變的變換的集合。這種對稱群,特別是連續李群,在很多學術學科中扮演重要角色。例如,矩陣群可以用來理解在狹義相對論底層的基本物理定律和在分子化學中的對稱現象。 群的概念引發自多項式方程的研究,由埃瓦里斯特·伽罗瓦在1830年代開創。在得到來自其他領域如數論和幾何学的貢獻之后,群概念在1870年左右形成并牢固建立。現代群論是非常活躍的數學學科,它以自己的方式研究群。為了探索群,數學家發明了各種概念來把群分解成更小的、更好理解的部分,比如子群、商群和單群。除了它們的抽象性質,群理論家還從理論和計算兩種角度來研究具體表示群的各種方式(群的表示)。對有限群已經發展出了特別豐富的理論,這在1983年完成的有限簡單群分類中達到頂峰。从1980年代中叶以来,将有限生成群作为几何对象来研究的几何群论,成为了群论中一个特别活跃的分支。.

查看 道路 (拓扑学)和群

環圈

數學中的環圈(loop)是拓扑空间X上的连续函数f,其定義域為单位区间I.

查看 道路 (拓扑学)和環圈

连通空间

拓扑空间X称为是连通的。当且仅当以下叙述之一成立:.

查看 道路 (拓扑学)和连通空间

范畴论

疇論是數學的一門學科,以抽象的方法來處理數學概念,將這些概念形式化成一組組的「物件」及「態射」。數學中許多重要的領域可以形式化成範疇,並且使用範疇論,令在這些領域中許多難理解、難捉摸的數學結論可以比沒有使用範疇還會更容易敘述及證明。 範疇最容易理解的一個例子為集合範疇,其物件為集合,態射為集合間的函數。但需注意,範疇的物件不一定要是集合,態射也不一定要是函數;一個數學概念若可以找到一種方法,以符合物件及態射的定義,則可形成一個有效的範疇,且所有在範疇論中導出的結論都可應用在這個數學概念之上。 範疇最簡單的例子之一為广群,其態射皆為可逆的。群胚的概念在拓撲學中很重要。範疇現在在大部分的數學分支中都有出現,在理論電腦科學的某些領域中用于對應資料型別,而在數學物理中被用來描述向量空間。 範疇論不只是對研究範疇論的人有意義,對其他數學家而言也有著其他的意思。一個可追溯至1940年代的述語「一般化的抽象廢話」,即被用來指範疇論那相對於其他傳統的數學分支更高階的抽象化。.

查看 道路 (拓扑学)和范畴论

自同构

數學上,自同構是從一個到自身的同構,可以看為這對象的一個對稱,將這對象映射到自身而保持其全部結構的一個途徑。一個對象的所有自同構的集合是一個群,稱為自同構群,大致而言,是這對象的對稱群。.

查看 道路 (拓扑学)和自同构

自同态

在数学中,自同态是从一个数学对象到它本身的态射(或同态)。例如,向量空间V的自同态是线性映射ƒ: V → V,而群G的自同态则是群同态ƒ: G → G,等等。一般地,我们可以讨论任何范畴中的自同态,在集合范畴中,自同态就是从集合S到它本身的函数。 在任何范畴中,X的任何两个自同态的复合也是X的自同态。于是可以推出,X的所有自同态的集合形成了一个幺半群,记为End(X)(或EndC(X),以强调范畴C)。 X的可逆自同态称为自同构。所有自同构的集合是End(X)的一个子群,称为X的自同构群,记为Aut(X)。在以下的图中,箭头表示蕴含: |- | align.

查看 道路 (拓扑学)和自同态

連續函數 (拓撲學)

在拓撲學和數學的相關領域裡,連續函數是指在拓撲空間之間的一種態射。直觀上來說,其為一個函數f,其中每一群在f(x)附近的點都會含有在x附近的一群點之值。對一個一般的拓撲空間來說,這是指f(x)的鄰域總會包含著x之鄰域的值。 在一個度量空間(如實數)裡,這是指在f(x)一定距離內的點總會包含著在x某些距離內的所有點。.

查看 道路 (拓扑学)和連續函數 (拓撲學)

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

查看 道路 (拓扑学)和数学

拓扑空间

拓扑空间是一种数学结构,可以在上頭形式化地定義出如收敛、连通、连续等概念。拓扑空间在现代数学的各个分支都有应用,是一个居于中心地位的、统一性的概念。拓扑空间有独立研究的价值,研究拓扑空间的数学分支称为拓扑学。.

查看 道路 (拓扑学)和拓扑空间

曲线

曲线的普通定义就是在几何空间中的“弯曲了的线”。而直线是一种特殊的曲线,只不过它的曲率为零。在《解析几何》中,曲线用一组连续函数的方程组来表示。 曲线和直线都是指欧几里得几何所定义的欧几里得空间中的相关概念。此外,还存在多种不为多数人所知的非欧几里得几何,其中的直线和曲线的定义和欧几里得几何的定义有很大差别,甚至不能类比。想深入学习数学的人切忌将不同几何空间中的同名概念相互混淆。.

查看 道路 (拓扑学)和曲线

态射

数学上,态射(morphism)是两个数学结构之间保持结构的一种过程抽象。 最常见的这种过程的例子是在某种意义上保持结构的函数或映射。例如,在集合论中,态射就是函数;在群论中,它们是群同态;而在拓扑学中,它们是连续函数;在泛代数(universal algebra)的范围,态射通常就是同态。 对态射和它们定义于其间的结构(或对象)的抽象研究构成了范畴论的一部分。在范畴论中,态射不必是函数,而通常被视为两个对象(不必是集合)间的箭头。不像映射一个集合的元素到另外一个集合,它们只是表示域(domain)和陪域(codomain)间的某种关系。 尽管态射的本质是抽象的,多数人关于它们的直观(事实上包括大部分术语)来自于具体范畴的例子,在那里对象就是有附加结构的集合而态射就是保持这种结构的函数。.

查看 道路 (拓扑学)和态射

另见

同伦论