徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

域扩张

指数 域扩张

域扩张(field extensions)是数学分支抽象代数之域论中的主要研究对象,基本想法是从一个基域开始以某种方式构造包含它的“更大”的域。域扩张可以推广为环扩张。.

40 关系: 域 (數學)单射可分多项式可分扩张双射同构向量空间多項式多项式环复数子域子群实数代数数域代數數伽罗瓦理论基本定理伽罗瓦群佐恩引理分式環分裂域商环商群环同态理想 (环论)素数群论特征 (代数)超越數自同构集合P進數抽象代数恆等函數根 (数学)正规扩张有理数有限域数域数学

域(field)可以指:.

新!!: 域扩张和域 · 查看更多 »

域 (數學)

在抽象代数中,域(Field)是一种可進行加、減、乘和除(除了除以零之外,「零」即加法單位元素)運算的代數結構。域的概念是数域以及四则运算的推广。 域是环的一种。域和一般的环的区别在于域要求它的元素(除零元素之外)可以进行除法运算,这等价于说每个非零的元素都要有乘法逆元。體中的運算关于乘法是可交换的。若乘法運算沒有要求可交換則稱為除環(division ring)或skew field。.

新!!: 域扩张和域 (數學) · 查看更多 »

单射

在數學裡,單射函數(或稱嵌射函數,國家教育研究院雙語詞彙、學術名詞暨辭書資訊網、一對一函數,英文稱 injection、injective function或 one-to-one function)為一函數,其將不同的輸入值對應到不同的函數值上。更精確地說,函數f被稱為是單射的,當對每一陪域內的y,存在至多一個定義域內的x使得f(x).

新!!: 域扩张和单射 · 查看更多 »

可分多项式

数学中,可分多项式在不同的作者的书下有两个略微不同的定义。 最常见的一个定义是:当在一个给定域K上的多项式P(X)在K的代数闭包中有不同的根时,称多项式为可分的。换言之它的互异根的数量需要等于多项式的次数。在多项式因式分解的观点下,这样的多项式是无平方多项式。 第二个定义,当P(X)在K中的每个不可约因子在K的代数闭包中的根互不相同,此时称P(X)是可分的。这意味着每个不可约因子是无平方项的。在这个定义中,可分性依赖于K,比如任何一个不可分的不可约多项式P在它的分裂域上都变成可分的了。并且在这个定义下,每个完美域上的多项式是可分的,这包含了0特征域和所有有限域。 两个定义对于K上不可约多项式是等价的,这个被用来定义域K的可分扩张。 在条目的余下部分我们只用第一个定义。 一个多项式可分当且仅当它与它的形式导数P'(X)互素。.

新!!: 域扩张和可分多项式 · 查看更多 »

可分扩张

可分扩张是抽象代数之域扩张理论中的概念。如果一个代数扩张满足:任何一个中元素在基域上的极小多项式都是可分多项式,那么这个扩张就称作可分扩张。由于特征为0的域(包括常见的有理数域\mathbb)以及有限域都是完美域,任何这些域上的代数扩张都是可分扩张,因此可分扩张在域论研究中十分重要。可分扩张还是伽罗瓦扩张的条件之一,因此它在伽罗瓦理论中也扮演了重要的角色。.

新!!: 域扩张和可分扩张 · 查看更多 »

双射

數學中,一個由集合X映射至集合Y的函數,若對每一在Y內的y,存在唯一一個在X內的x与其对应,則此函數為對射函數。 換句話說,f為雙射的若其為兩集合間的一一對應,亦即同時為單射和滿射。 例如,由整數集合\Z至\Z的函數\operatorname,其將每一個整數x連結至整數\operatorname(x).

新!!: 域扩张和双射 · 查看更多 »

同构

在抽象代数中,同构(isomorphism)指的是一个保持结构的双射。在更一般的范畴论语言中,同构指的是一个态射,且存在另一个态射,使得两者的复合是一个恒等态射。 正式的表述是:同构是在数学对象之间定义的一类映射,它能揭示出在这些对象的属性或者操作之间存在的关系。若两个数学结构之间存在同构映射,那么这两个结构叫做是同构的。一般来说,如果忽略掉同构的对象的属性或操作的具体定义,单从结构上讲,同构的对象是完全等价的。.

新!!: 域扩张和同构 · 查看更多 »

向量空间

向量空間是现代数学中的一个基本概念。是線性代數研究的基本对象。 向量空间的一个直观模型是向量几何,幾何上的向量及相关的運算即向量加法,標量乘法,以及对運算的一些限制如封闭性,结合律,已大致地描述了“向量空間”这个數學概念的直观形象。 在现代数学中,“向量”的概念不仅限于此,满足下列公理的任何数学对象都可被当作向量处理。譬如,實系數多項式的集合在定义适当的运算后构成向量空間,在代数上处理是方便的。单变元实函数的集合在定义适当的运算后,也构成向量空间,研究此类函数向量空间的数学分支称为泛函分析。.

新!!: 域扩张和向量空间 · 查看更多 »

多項式

多项式(Polynomial)是代数学中的基础概念,是由称为未知数的变量和称为系数的常数通过有限次加减法、乘法以及自然数幂次的乘方运算得到的代数表达式。多项式是整式的一种。未知数只有一个的多项式称为一元多项式;例如x^2-3x+4就是一个一元多项式。未知数不止一个的多项式称为多元多项式,例如就是一個三元多项式。 可以写成只由一项构成的多项式也称为单项式。如果一项中不含未知数,则称之为常数项。 多项式在数学的很多分支中乃至许多自然科学以及工程学中都有重要作用。.

新!!: 域扩张和多項式 · 查看更多 »

多项式环

在抽象代數中,多項式環推廣了初等數學中的多項式。一個環 R 上的多項式環是由係數在 R 中的多項式構成的環,其中的代數運算由多項式的乘法與加法定義。在範疇論的語言中,當 R 為交換環時,多項式環可以被刻劃為交換 R-代數範疇中的自由對象。.

新!!: 域扩张和多项式环 · 查看更多 »

复数

#重定向 复数 (数学).

新!!: 域扩张和复数 · 查看更多 »

子域

子域可以指:.

新!!: 域扩张和子域 · 查看更多 »

子群

假設(G, *)是一個群,若 H 是 G 的一個非空子集且同時 H 與相同的二元運算 * 亦構成一個群,則 (H, *) 稱為 (G, *) 的一個子群。參閱群論。 更精確地來說,若運算*在H的限制也是個在H上的群運算,则称H為G的子群。 一個群G的純子群是指一個子群H,其為G的純子集(即H ≠ G)。任一個群的當然群為只包含單位元素的子群。若H為G的子群,則G有時會被稱為H的「母群」。 相同的定義可以應用在更廣義的範圍內,當G為一任意的半群,但此一條目中只處理群的子群而已。群G有時會被標記成有序對(G,*),通常用以強調其運算*當G帶有多重的代數或其他結構。 在下面的文章中,會使用省略掉*的常規,並將乘積a*b寫成ab。.

新!!: 域扩张和子群 · 查看更多 »

实数

实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.

新!!: 域扩张和实数 · 查看更多 »

代数数域

代数数域是数学中代数数论的基本概念,数域的一类,有时也被简称为数域,指有理数域\mathbb的有限扩张形成的扩域。任何代数数域都可以视作\mathbb上的有限维向量空间。 对代数数域的研究,或者更一般地说,对有理数域的代数扩张的研究,是代数数论的中心主题。.

新!!: 域扩张和代数数域 · 查看更多 »

代數數

代數數是代数与数论中的重要概念,指任何整係數多项式的复根。 所有代数数的集合构成一个域,称为代数数域(与定义为有理数域的有限扩张的代数数域同名,但不是同一个概念),记作\mathcal或\overline,是复数域\mathbb的子域。 不是代数数的实数称为超越数,例如圆周率。.

新!!: 域扩张和代數數 · 查看更多 »

伽罗瓦理论基本定理

伽罗瓦理论基本定理是抽象代数中的定理,通过群的概念来描述特定域扩张的细致结构。定理说明了,如果某个域扩张是有限伽罗瓦扩张,则此扩张的伽罗瓦群的子群与其中间域(即子扩张⊂⊂中的)之间有一一对应关系。.

新!!: 域扩张和伽罗瓦理论基本定理 · 查看更多 »

伽罗瓦群

伽罗瓦群(Groupe de Galois)是抽象代数中域论的概念,表示与某个类型的域扩张相伴的群,是伽罗瓦理论的基础概念。域扩张源于多项式。通过伽罗瓦群研究域扩张以及多项式的理论,称为伽罗瓦理论,是十九世纪法国数学家埃瓦里斯特·伽罗瓦为了解决“高次多项式方程是否有根式解”的问题而创造的。后世也以他的名字命名相关的概念。 用置换群更初等地讨论伽罗瓦群,参见伽罗瓦理论一文。.

新!!: 域扩张和伽罗瓦群 · 查看更多 »

佐恩引理

佐恩引理(Zorn's Lemma)也被称为库拉托夫斯基-佐恩(Kuratowski-Zorn)引理,是集合论中一个重要的定理,其陳述為: 在任何一非空的偏序集中,若任何链(即全序的子集)都有上界,則此偏序集内必然存在(至少一枚)极大元。 佐恩引理是以数学家马克斯·佐恩的名字命名的。 具体来说,假设(P, \le)是一个偏序集,它的一个子集T称为是一个全序子集,如果对于任意的s, t \in T有s \le t或t \le s。而T称为是有上界的,如果P中存在一个元素u,使得对于任意的t \in T,都有t \le u。在上述定义中,并不要求u一定是T中的元素。而一个元素m \in T称为是極大的,如果x \in T且x \ge m,则必然有x.

新!!: 域扩张和佐恩引理 · 查看更多 »

分式環

在抽象代數中,分式環或分式域是包含一個整環的最小域,典型的例子是有理數域之於整數環。此外分式環也可以推廣到一般的交換環,此時通常稱作全分式環。 分式環有時也被稱為商域,但此用語易與商環混淆。.

新!!: 域扩张和分式環 · 查看更多 »

分裂域

在抽象代数中,一个系数域为\mathbb的多项式P(x)\,的分裂域(根域)是\mathbb的“最小”的一个扩域\mathbb,使得在其中P\,可以被分解为一次因式x-r_i\,的乘积,其中的r_i\,是\mathbb中元素。一个\mathbb上的多项式并不一定只有一个分裂域,但它所有的分裂域都是同构的:在同构意义上,\mathbb上的多项式的分裂域是唯一的。.

新!!: 域扩张和分裂域 · 查看更多 »

商环

在環論中,商環(或稱剩餘類環)是環對一個理想的商結構。.

新!!: 域扩张和商环 · 查看更多 »

商群

在數學中,給定一個群G和G的正規子群N,G在N上的商群或因子群,在直覺上是把正規子群N“萎縮”為單位元的群。商群寫為G/N并念作G mod N(mod是模的簡寫)。如果N不是正規子群,商仍可得到,但結果將不是群,而是齊次空間。.

新!!: 域扩张和商群 · 查看更多 »

环同态

在环论或抽象代数中,环同态是指两个环R與S之间的映射f保持两个环的加法与乘法运算。 更加精确地,如果R和S是环,则环同态是一个函数f: R → S,使得:.

新!!: 域扩张和环同态 · 查看更多 »

理想 (环论)

想(Ideal)是一个抽象代数中的概念。.

新!!: 域扩张和理想 (环论) · 查看更多 »

素数

質--數(Prime number),又称素--数,指在大於1的自然数中,除了1和該数自身外,無法被其他自然数整除的数(也可定義為只有1與該數本身两个正因数的数)。大於1的自然數若不是質數,則稱之為合數。例如,5是個質數,因為其正因數只有1與5。而6則是個合數,因為除了1與6外,2與3也是其正因數。算術基本定理確立了質數於數論裡的核心地位:任何大於1的整數均可被表示成一串唯一質數之乘積。為了確保該定理的唯一性,1被定義為不是質數,因為在因式分解中可以有任意多個1(如3、1×3、1×1×3等都是3的有效因數分解)。 古希臘數學家歐幾里得於公元前300年前後證明有無限多個質數存在(欧几里得定理)。現時人們已發現多種驗證質數的方法。其中試除法比較簡單,但需時較長:設被測試的自然數為n,使用此方法者需逐一測試2與\sqrt之間的整數,確保它們無一能整除n。對於較大或一些具特別形式(如梅森數)的自然數,人們通常使用較有效率的演算法測試其是否為質數(例如277232917-1是直至2017年底為止已知最大的梅森質數)。雖然人們仍未發現可以完全區別質數與合數的公式,但已建構了質數的分佈模式(亦即質數在大數時的統計模式)。19世紀晚期得到證明的質數定理指出:一個任意自然數n為質數的機率反比於其數位(或n的對數)。 許多有關質數的問題依然未解,如哥德巴赫猜想(每個大於2的偶數可表示成兩個素數之和)及孿生質數猜想(存在無窮多對相差2的質數)。這些問題促進了數論各個分支的發展,主要在於數字的解析或代數方面。質數被用於資訊科技裡的幾個程序中,如公鑰加密利用了難以將大數分解成其質因數之類的性質。質數亦在其他數學領域裡形成了各種廣義化的質數概念,主要出現在代數裡,如質元素及質理想。.

新!!: 域扩张和素数 · 查看更多 »

群论

在数学和抽象代数中,群论研究名为群的代数结构。 群在抽象代数中具有基本的重要地位:许多代数结构,包括环、-zh-hant:體;zh-hans:域-和向量空间等可以看作是在群的基础上添加新的运算和公理而形成的。群的概念在数学的许多分支都有出现,而且群论的研究方法也对抽象代数的其它分支有重要影响。线性代数群(linear algebraic groups)和李群作为群论的分支,在经历了重大的发展之后,已经形成相对独立的研究领域。 群论的重要性还体现在物理学和化学的研究中,因为许多不同的物理结构,如晶体结构和氢原子结构可以用群论方法来进行建模。于是群论和相关的群表示论在物理学和化学中有大量的应用。 群论中的重要结果,有限单群分类是20世纪数学最重要的结果之一。该定理的证明是集体努力的结果,它的证明出现在1960年和1980年之间出版的超过10,000页的期刊上。.

新!!: 域扩张和群论 · 查看更多 »

特征 (代数)

在数学中,环R的特征被定义为最小的正整数n使得 这里的na被定义为 如果不存在这样的n,R的特征被定义为0。R的特征经常指示为char(R)。 环R的特征可以等价的定义为唯一的自然数n使得nZ是映射1到1R的从Z到R的唯一的环同态的核。另一个等价的定义:R的特征是唯一的自然数n使得R包含同构于商环Z/nZ的子环。.

新!!: 域扩张和特征 (代数) · 查看更多 »

超越數

在數論中,超越數是指任何一個不是代數數的无理数。只要它不是任何一個有理係數代數方程的根,它即是超越數。最著名的超越數是e以及π。.

新!!: 域扩张和超越數 · 查看更多 »

自同构

數學上,自同構是從一個到自身的同構,可以看為這對象的一個對稱,將這對象映射到自身而保持其全部結構的一個途徑。一個對象的所有自同構的集合是一個群,稱為自同構群,大致而言,是這對象的對稱群。.

新!!: 域扩张和自同构 · 查看更多 »

集合

集合可以指:.

新!!: 域扩张和集合 · 查看更多 »

P進數

进数是数论中的概念,也称作局部数域,是有理数域拓展成的完备数域的一种。这种拓展与常见的有理数域\mathbb到实数域\mathbb、复数域\mathbb的数系拓展不同,其具体在于所定义的“距离”概念。进数的距离概念建立在整数的整除性质上。给定素数,若两个数之差被的高次幂整除,那么这两个数距离就“接近”,幂次越高,距离越近。这种定义在数论性质上的“距离”能够反映同余的信息,使进数理论成为了数论研究中的有力工具。例如安德鲁·怀尔斯对费马大定理的证明中就用到了进数理论。 进数的概念首先由库尔特·亨泽尔于1897年构思并刻画,其发展动机主要是试图将幂级数方法引入到数论中,但现今进数的影响已远不止于此。例如可以在进数上建立p进数分析,将数论和分析的工具结合起来。此外进数在量子物理学、认知科学、计算机科学等领域都有应用。.

新!!: 域扩张和P進數 · 查看更多 »

抽象代数

抽象代数作为数学的一门学科,主要研究对象是代数结构,比如群、环、-zh-hans:域;zh-hant:體-、模、向量空间、格與域代数。「抽象代數」一詞出現於20世紀初,作為與其他代數領域相區別之學科。 代數結構與其相關之同態,構成數學範疇。範疇論是用來分析與比較不同代數結構的強大形式工具。 泛代數是一門與抽象代數有關之學科,研究將各類代數視為整體所會有的性質與理論。例如,泛代數研究群的整體理論,而不會研究特定的群。.

新!!: 域扩张和抽象代数 · 查看更多 »

恆等函數

在數學裡,恆等函數總是傳回和其輸入值相同的函數值。換句話說,恆等函數為函數f(x).

新!!: 域扩张和恆等函數 · 查看更多 »

根 (数学)

數學上,函數f的一個根(或稱零點)是f的定義域D中適合f(x).

新!!: 域扩张和根 (数学) · 查看更多 »

正规扩张

正规扩张是抽象代数中的概念,属于域扩张中的一类。一个域扩张是正规扩张当且仅当扩域是多项式环中的某个多项式的分裂域。布尔巴基学派将这类扩张称为“准伽罗瓦扩张”。正规扩张是代数扩张的一种。.

新!!: 域扩张和正规扩张 · 查看更多 »

有理数

数学上,可以表达为两个整数比的数(a/b, b≠0)被定义为有理数,例如3/8,0.75(可被表达为3/4)。整数和分数统称为有理数。与有理数对应的是无理数,如\sqrt无法用整数比表示。 有理数与分數的区别,分數是一种表示比值的记法,如 分數\sqrt/2 是无理数。 所有有理数的集合表示为Q,Q+,或\mathbb。定义如下: 有理数的小数部分有限或为循环。不是有理數的實數遂稱為無理數。.

新!!: 域扩张和有理数 · 查看更多 »

有限域

在数学中,有限域(finite field)或伽罗瓦域(Galois field,为纪念埃瓦里斯特·伽罗瓦命名)是包含有限个元素的域。与其他域一样,有限域是进行加减乘除运算都有定义并且满足特定规则的集合。有限域最常见的例子是当 为素数时,整数对 取模。 有限域的元素个数称为它的序。 有限域在许多数学和计算机科学领域的基础,包括数论、代数几何、伽羅瓦理論、有限幾何學、密码学和编码理论。.

新!!: 域扩张和有限域 · 查看更多 »

数域

数域是近世代数学中常见的概念,指对加减乘除四则运算封闭的代数系统。通常定义的数域是指复数域\mathbb的子域。“数域”一词有时也被用作代数数域的简称,但两者的定义有细微的差别。.

新!!: 域扩张和数域 · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

新!!: 域扩张和数学 · 查看更多 »

重定向到这里:

域的扩张有限擴張扩张域扩域體擴張

传出传入
嘿!我们在Facebook上吧! »