目录
28 关系: 单扩张,可作图多边形,可分扩张,不可约多项式,中国图书馆分类法 (O1),广义黎曼猜想,亚纯函数,代數獨立,代數擴張,伽罗瓦理论基本定理,伽罗瓦群,伽罗瓦连接,伽罗瓦扩张,伽羅瓦理論,弗罗贝尼乌斯自同态,分裂域,素数,阿贝尔-鲁菲尼定理,酉群,良态,P進數,林德曼-魏尔斯特拉斯定理,極小多項式,正规扩张,朗蘭茲綱領,戴德金整環,整體域,整性。
单扩张
单扩张是由一个元素的伴隨函子生成的域扩张,也是最简单的域扩张,记作Fa。新的域是原域加上新元素而成的最小域。 本原元定理描述了哪些域擴張E/F中的E可以表示為单扩张。 Category:域論.
查看 域扩张和单扩张
可作图多边形
在数学中,可作图多边形是可以用尺规作图的方式作出的正多边形。例如,正五边形可以只使用圆规和直尺作出,而正七边形却不可以。.
查看 域扩张和可作图多边形
可分扩张
可分扩张是抽象代数之域扩张理论中的概念。如果一个代数扩张满足:任何一个中元素在基域上的极小多项式都是可分多项式,那么这个扩张就称作可分扩张。由于特征为0的域(包括常见的有理数域\mathbb)以及有限域都是完美域,任何这些域上的代数扩张都是可分扩张,因此可分扩张在域论研究中十分重要。可分扩张还是伽罗瓦扩张的条件之一,因此它在伽罗瓦理论中也扮演了重要的角色。.
查看 域扩张和可分扩张
不可约多项式
在數學裡,不可約多項式(irreducible polynomial)是指不可被分解成兩個非常數多項式之乘積的非常數多項式。不可約的性質取決於係數所屬於的體或環。例如,多項式在係數1與 -2被認為是整數時是不可約的,而在這些係數被認為是實數時可分解成(x-\sqrt)(x+\sqrt)。亦即,「多項式在整數上不可約,但在實數上不是不可約。」 不是不可約的多項式有時會被稱為可約。不過,「可約」這一詞可能被會用來指其他的概念,須小心使用。 不可約多項式於多項式分解與代數體擴張裡都會自然地出現。 將不可約多項式與質數相比會很有幫助:質數(與具相同大小之對應負數)為不可約的整數。質數具有的許多「不可約」這個概念之一般性質,同樣可適用於不可約多項式之上,如質數或不可約因式的唯一分解。.
查看 域扩张和不可约多项式
中国图书馆分类法 (O1)
*O1 数学 ----.
广义黎曼猜想
黎曼猜想是数学中最重要的猜想之一,描述了黎曼ζ函数非平凡零点的分布规律。而其中黎曼ζ函数可以用各种整体L函数(global L-function)替代,由此得到黎曼猜想不同类型的推广。这些推广的猜想描述的是不同L函数非平凡零点分布的规律。许多数学家相信这些猜想是正确的。不过其中仅有部分函数域情形下的推广得到了证明。 整体L函数可以与椭圆曲线、数域(此时称为戴德金ζ函数)、马斯形式(Maass form)或狄利克雷特征(此时称为狄利克雷L函数)相联系。其中,描述戴德金ζ函数的黎曼猜想被称为扩展黎曼猜想(extended Riemann hypothesis,ERH),而描述狄利克雷L函数的黎曼猜想则被称为广义黎曼猜想(generalized Riemann hypothesis,GRH)。(也有许多数学家用“广义黎曼猜想”用作对各种整体L函数推广的总称,而非单指狄利克雷L函数下的情形。).
查看 域扩张和广义黎曼猜想
亚纯函数
在复分析中,一个复平面的开子集D上的亚纯函数是一个在D上除一个或若干个孤立点集合之外的区域全纯的函数,那些孤立点称为该函数的极点。 每个D上的亚纯函数可以表达为两个全纯函数的比(其分母不恒为0):极点也就是分母的零点。 直观的讲,一个亚纯函数是两个性质很好的(全纯)函数的比。这样的函数本身性质也很“好”,除了分式的分母为零的点,那时函数的值为无穷。 从代数的观点来看,如果D是一个连通集,则亚纯函数的集合是全纯函数的整域的分式域。这和有理数 \mathbb和整数 \mathbb的关系类似。.
查看 域扩张和亚纯函数
代數獨立
在抽象代數裡,一個體L的子集S若被稱做代數獨立於一子體K的話,表示S內的元素都不符合係數包含在K內的非平凡多項式。這表示任何以S內元素排成的有限序列\alpha_1,\cdots,\alpha_n(沒有兩個是一樣的)和任一係數包含在K的非零多項式P(x_1,\cdots,x_n),都會得到: 特別的是,單元素集合\若是代數獨立於K的話,若且唯若\alpha會是K內的超越數或超越函數。一般而言,和於K代數獨立集合的所有元素也必然會是K內的超越數或超越函數,但反之則不必然。 舉例來說,實數\mathbb的子集\並不代數獨立於有理數\mathbb,當存在一非零多項式: x_1代入\sqrt和x_2代入2\pi+1時會變成0。 林德曼-魏爾斯特拉斯定理時常用做證明某些函數會代數獨立於有理數:當\alpha_1,\cdots,\alpha_n為線性獨立於有理數的代數數時,\mbox^,\cdots,\mbox^便會代數獨立於有理數。 現在依然沒有證明出集合\是否代數獨立於有理數。在1996年證明了\是代數獨立於有理數的。 給定一體擴張L/K,我們可以利用佐恩引理來證明總是存在一L的最大代數獨立子集於K。甚至,所有個最大代數獨立子集都會有相同的基數,稱之為此一體擴張的超越次數。 Category:域论.
查看 域扩张和代數獨立
代數擴張
代数扩张是抽象代數中域扩张的一类。一個域擴張被稱作代數擴張,若且唯若中的每个元素都是某个以中元素为系数的非零多項式的根。反之則稱之为超越擴張。最簡單的代數擴張例子有:\mathbb/\mathbb、\mathbb(\sqrt)/\mathbb。.
查看 域扩张和代數擴張
伽罗瓦理论基本定理
伽罗瓦理论基本定理是抽象代数中的定理,通过群的概念来描述特定域扩张的细致结构。定理说明了,如果某个域扩张是有限伽罗瓦扩张,则此扩张的伽罗瓦群的子群与其中间域(即子扩张⊂⊂中的)之间有一一对应关系。.
伽罗瓦群
伽罗瓦群(Groupe de Galois)是抽象代数中域论的概念,表示与某个类型的域扩张相伴的群,是伽罗瓦理论的基础概念。域扩张源于多项式。通过伽罗瓦群研究域扩张以及多项式的理论,称为伽罗瓦理论,是十九世纪法国数学家埃瓦里斯特·伽罗瓦为了解决“高次多项式方程是否有根式解”的问题而创造的。后世也以他的名字命名相关的概念。 用置换群更初等地讨论伽罗瓦群,参见伽罗瓦理论一文。.
查看 域扩张和伽罗瓦群
伽罗瓦连接
在数学中,特别是在序理论中,伽罗瓦连接是在两个偏序集("poset")之间的特殊的对应。伽罗瓦连接一般化了伽罗瓦理论中在子群和子域之间的对应。它们用于各种数学理论和编程理论中。 伽罗瓦连接要弱于在涉及到的两个偏序集之间的同构,但是所有的伽罗瓦连接都引发特定在两个子偏序集之间的同构。.
查看 域扩张和伽罗瓦连接
伽罗瓦扩张
伽罗瓦扩张是抽象代数中伽罗瓦理论的核心概念之一。伽罗瓦扩张是域扩张的一类。如果某个域扩张既是可分扩张也是正规扩张,则称其为伽罗瓦扩张。另一个等价的定义是:伽罗瓦扩张是使得其上的环自同构群的固定域为其基域的域扩张。伽罗瓦扩张上的自同构群称为伽罗瓦群,而且伽罗瓦扩张的中间域与其伽罗瓦群的子群之间的关系满足伽罗瓦理论基本定理。.
查看 域扩张和伽罗瓦扩张
伽羅瓦理論
在数学中,特别是抽象代数理论中,由法國數學家埃瓦里斯特·伽罗瓦(Évariste Galois)得名的伽罗瓦理论提供了域论和群论之间的联系。应用伽罗瓦理论,域论中的一些问题可以化简为更简单易懂的群论问题。 伽罗瓦最初使用置换群来描述给定的多项式的根与根之间的关系。由戴德金(Julius Wilhelm Richard Dedekind)、利奥波德·克罗内克(Leopold Kronecker)、埃米爾·阿廷(Emil Artin)等人发展起来的现代伽罗瓦理论引入了关于域扩张及其自同构的研究。 伽罗瓦理论的进一步抽象为伽罗瓦连接理论。.
查看 域扩张和伽羅瓦理論
弗罗贝尼乌斯自同态
在数学中,特别交换代数和域理论中,弗罗贝尼乌斯自同态(Frobenius,简称弗罗贝尼乌斯)是特征为素数p 的交换环中的一个特殊的自同态。这个自同态以德国数学家费迪南德·格奥尔格·弗罗贝尼乌斯命名。弗罗贝尼乌斯自同态将环中的每个元素射到它的p 次乘幂。 x \mapsto x^p 在一般情况下,弗罗贝尼乌斯并不总是自同构。.
分裂域
在抽象代数中,一个系数域为\mathbb的多项式P(x)\,的分裂域(根域)是\mathbb的“最小”的一个扩域\mathbb,使得在其中P\,可以被分解为一次因式x-r_i\,的乘积,其中的r_i\,是\mathbb中元素。一个\mathbb上的多项式并不一定只有一个分裂域,但它所有的分裂域都是同构的:在同构意义上,\mathbb上的多项式的分裂域是唯一的。.
查看 域扩张和分裂域
素数
質--數(Prime number),又称素--数,指在大於1的自然数中,除了1和該数自身外,無法被其他自然数整除的数(也可定義為只有1與該數本身两个正因数的数)。大於1的自然數若不是質數,則稱之為合數。例如,5是個質數,因為其正因數只有1與5。而6則是個合數,因為除了1與6外,2與3也是其正因數。算術基本定理確立了質數於數論裡的核心地位:任何大於1的整數均可被表示成一串唯一質數之乘積。為了確保該定理的唯一性,1被定義為不是質數,因為在因式分解中可以有任意多個1(如3、1×3、1×1×3等都是3的有效因數分解)。 古希臘數學家歐幾里得於公元前300年前後證明有無限多個質數存在(欧几里得定理)。現時人們已發現多種驗證質數的方法。其中試除法比較簡單,但需時較長:設被測試的自然數為n,使用此方法者需逐一測試2與\sqrt之間的整數,確保它們無一能整除n。對於較大或一些具特別形式(如梅森數)的自然數,人們通常使用較有效率的演算法測試其是否為質數(例如277232917-1是直至2017年底為止已知最大的梅森質數)。雖然人們仍未發現可以完全區別質數與合數的公式,但已建構了質數的分佈模式(亦即質數在大數時的統計模式)。19世紀晚期得到證明的質數定理指出:一個任意自然數n為質數的機率反比於其數位(或n的對數)。 許多有關質數的問題依然未解,如哥德巴赫猜想(每個大於2的偶數可表示成兩個素數之和)及孿生質數猜想(存在無窮多對相差2的質數)。這些問題促進了數論各個分支的發展,主要在於數字的解析或代數方面。質數被用於資訊科技裡的幾個程序中,如公鑰加密利用了難以將大數分解成其質因數之類的性質。質數亦在其他數學領域裡形成了各種廣義化的質數概念,主要出現在代數裡,如質元素及質理想。.
查看 域扩张和素数
阿贝尔-鲁菲尼定理
阿贝尔-鲁菲尼定理是代数学中的重要定理。它指出,五次及更高次的多项式方程没有一般的求根公式,即不是所有这样的方程都能由方程的系数经有限次四则运算和开方运算求根。这个定理以保罗·鲁菲尼和尼尔斯·阿贝尔命名。前者在1799年给出了一个不完整的证明,后者则在1824年给出了完整的证明。埃瓦里斯特·伽罗瓦创造了群论,独立地给出了更广泛地判定多项式方程是否拥有根式解的方法,并给出了定理的证明,但直到他死後的1846年才得以发表。.
酉群
酉群,又叫幺正群,是李群的一种。在群论中,n阶酉群(unitary group)是n×n 酉矩阵组成的群,群乘法是矩阵乘法。酉群记作U(n),是一般线性群GL(n, C)的一个子群。 在最简单情形n.
查看 域扩张和酉群
良态
良态是数学(以及其他相关学科)中对数学对象相对性质的一种描述。它并没有固定和规范的定义,使用时往往取决于相应数学研究的关注范围、所使用的数学工具和手段、甚至是各学科偏好,以表示对象的性质好到适合研究的程度。在不同的数学分支中,良态代表着不同的意义。通过区分哪些数学对象是“良态的”,哪些数学对象是“病态的”,有助于缩小研究范围和降低分析的难度,但是也相应的限制了所得结论的一般性。.
查看 域扩张和良态
P進數
进数是数论中的概念,也称作局部数域,是有理数域拓展成的完备数域的一种。这种拓展与常见的有理数域\mathbb到实数域\mathbb、复数域\mathbb的数系拓展不同,其具体在于所定义的“距离”概念。进数的距离概念建立在整数的整除性质上。给定素数,若两个数之差被的高次幂整除,那么这两个数距离就“接近”,幂次越高,距离越近。这种定义在数论性质上的“距离”能够反映同余的信息,使进数理论成为了数论研究中的有力工具。例如安德鲁·怀尔斯对费马大定理的证明中就用到了进数理论。 进数的概念首先由库尔特·亨泽尔于1897年构思并刻画,其发展动机主要是试图将幂级数方法引入到数论中,但现今进数的影响已远不止于此。例如可以在进数上建立p进数分析,将数论和分析的工具结合起来。此外进数在量子物理学、认知科学、计算机科学等领域都有应用。.
查看 域扩张和P進數
林德曼-魏尔斯特拉斯定理
林德曼-魏尔斯特拉斯定理()是一个可以用于证明实数的超越性的定理。它表明,如果 是代数数,在有理数 内是线性独立的,那么e^, \ldots,e^在 内是代数独立的;也就是说,扩张域\mathbb(e^, \ldots,e^)在 内具有超越次数 。 一个等价的表述是:如果 是不同的代数数,那么指数 在代数数范围内是线性独立的。 这个定理由林德曼和魏尔斯特拉斯命名。林德曼在1882年证明了对于任何非零的代数数α,eα都是超越数,因此推出了圆周率是超越数。魏尔斯特拉斯在1885年证明了一个更一般的结果。 这个定理,以及格尔丰德-施奈德定理,可以推广为Schanuel猜想。.
極小多項式
在抽象代數中,一個域上的代數元 \alpha 之極小多項式(或最小多項式)是滿足 P(\alpha).
查看 域扩张和極小多項式
正规扩张
正规扩张是抽象代数中的概念,属于域扩张中的一类。一个域扩张是正规扩张当且仅当扩域是多项式环中的某个多项式的分裂域。布尔巴基学派将这类扩张称为“准伽罗瓦扩张”。正规扩张是代数扩张的一种。.
查看 域扩张和正规扩张
朗蘭茲綱領
朗蘭茲綱領是數學中一系列影響深遠的構想,聯繫數論、代數幾何與约化群表示理論;綱領最初由羅伯特·朗蘭茲於1967年在一封給韦伊的中提出。.
查看 域扩张和朗蘭茲綱領
戴德金整環
在環論中,戴德金整環是戴德金為了彌補一般數域中算術基本定理之闕如而引入的概念。在戴德金整環中,任意理想可以唯一地分解成素理想之積。.
查看 域扩张和戴德金整環
整體域
整體域是代數數論研究的主要對象,分成兩類:.
查看 域扩张和整體域
整性
整性是交換代數中的概念,用于描述在有理数域的某些扩域中,某些元素是否有类似于整数的性质。元素的整性(是否为整元素)本质上只依赖于環的概念。整性與環的整擴張推廣了代數數與代數擴張的概念。.
查看 域扩张和整性
亦称为 域的扩张,扩域。