目录
25 关系: 双分子亲核取代反应,取代基,丁基,乙酸汞,亲电加成反应,亲核体,互变异构体,区域选择性,共振 (化学),克莱森重排反应,环己烷构象,硼氢化钠,硼氢化氧化反应,碳正离子,羟基,烯烃,烯醇,炔烃,马氏规则,醚,醇,酮,HOMO/LUMO,有机反应,有机氧化还原反应。
- 加成反应
- 碳-杂原子键形成反应
双分子亲核取代反应
SN2反应(双分子亲核取代反应)是亲核取代反应的一类,其中S代表取代(Substitution),N代表亲核(Nucleophilic),2代表反应的决速步涉及两种分子。与SN1反应相对应,SN2反应中,亲核试剂带着一对孤对电子进攻具亲电性的缺电子中心原子,形成过渡态的同时,离去基团离去。反应中不生成碳正离子,速率控制步骤是上述的协同步骤,反应速率与两种物质的浓度成正比,因此称为双分子亲核取代反应。 在无机化学中,常称双分子亲核取代反应类型的反应机理为“交换机理”。.
取代基
取代基是取代的无机或有机化合物中氢原子的基团,取代发生后,会形成新的化合物。不同的取代基会导致不同的效应,如诱导效应、共振效应、电子效应及立体效应等,从而使不同的化合物产生不同的性质。一般“取代较多”与“氢较少”是同义词。 以下是一些取代基多少影响反应方向的例子:.
查看 羟汞化反应和取代基
丁基
在有机化学中,丁基是一种含四个碳的烷基自由基或官能团,具有通用化学式-C4H9,从两个丁烷异构体中的任意一个衍生而来。 异构体正丁烷(即直链烷烃)中的两个端基碳原子或中间的两个碳原子可连接其他基团,得到两种“丁基”基团:.
查看 羟汞化反应和丁基
乙酸汞
乙酸汞是一种化合物,化学式为Hg(CH3COO)2,有剧毒。.
查看 羟汞化反应和乙酸汞
亲电加成反应
亲电加成反应(EA),简称亲电加成,是亲电试剂(带正电的基团)进攻不饱和键引起的加成反应。反应中,不饱和键(双键或三键)打开,并与另一个底物形成两个新的σ键。亲电加成中最常见的不饱和化合物是烯烃和炔烃,以最简单的烯烃——乙烯为例,它与亲电试剂发生的加成反应可以通过下式来描述: 亲电加成有多种机理,包括:碳正离子机理、离子对机理、环鎓离子机理以及三中心过渡态机理。这些机理对过渡态的处理都有不同。除最后一种外,其他机理可通过下图依此表示: 反应采取哪种机理进行与亲电试剂和不饱和化合物的性质、溶剂的极性和过渡态的稳定性等都有很大关系,一般来说,卤素加成反应中,溴与烯烃的加成反应主要按照环鎓离子中间体机理进行,而氯与烯烃的加成反应主要按照前两种机理进行。这主要是因为两种卤素原子电负性和原子半径不同,溴的孤电子对容易和碳正离子p轨道重叠,而氯则不然。 不同的机理也会产生立体选择性不同的产物。碳正离子机理得到顺式加成和反式加成产物的混合物,离子对机理得到的是顺式加成产物,而环鎓离子机理得到反式加成产物。 对于不对称的亲电加成反应来讲,反应一般符合马氏规则,产物具有区域选择性。但双键碳上连有吸电子基或以有机硼化合物作亲电试剂时,产物是反马氏规则的,例如烯烃与乙硼烷生成烷基硼的反应。 主要的亲电加成反应类型,对于烯烃,主要有:卤素加成反应、加卤化氢反应、水合反应、氢化反应、羟汞化反应、硼氢化-氧化反应、Prins反应,以及与硫酸、次卤酸、有机酸、醇和酚的加成反应;对于炔烃,主要有:卤素加成反应、加卤化氢反应和水合反应。由于sp碳原子的电负性比sp2碳原子电负性强,与电子结合得更为紧密,故炔烃的亲电加成反应一般比烯烃要慢。 亲电试剂进攻芳香环时,主要发生的不是亲电加成反应,而是亲电芳香取代反应。其他的加成反应主要机理还有亲核加成反应、自由基加成反应和环加成反应。.
查看 羟汞化反应和亲电加成反应
亲核体
親核體,又叫親核基、親核試劑(Nucleophile,意思為原子核的喜好物)是一個基本的有機化學概念,指具有親核性的化学试剂,可用:Nu表示。它用来衡量一个试剂给电子能力的强弱。一般而言,与亲电试剂反应中,親核體亲核性越高,越容易產生化學反應。親核體在有機化學反應中提供電子,因此根據酸鹼電子理論的定義,親核體可視為路易士鹼。任何有孤電子對的分子、原子或陰離子均可作為親核體。 亲核性与碱性类似,但有所不同。很多情况下碱性高的物质亲核性也高,比如胺的碱性和亲核性均强于醇。但不尽然,比如膦的碱性弱于胺,而亲核性则强于胺。.
查看 羟汞化反应和亲核体
互变异构体
互变异构是某些有机化合物的结构在两种官能团异构体间产生平衡互相转换的现象,相应的异构体则称为互变异构体。大多数互变异构都涉及氢原子或质子的转移,以及单键向双键的转变。互变异构体在平衡中的分布与具体的因素有关,包括温度、溶剂和pH值等。 互变异构可被以下因素催化:.
查看 羟汞化反应和互变异构体
区域选择性
区域选择性,立体化学术语。当一个试剂对一个底物有一个以上的反应中心,而主要进攻其中一个的时候,该反应就被认为具有区域选择性。典型的区域选择性反应比如麦克尔加成。麦克尔加成反应中,底物共轭不饱和羰基化合物有两个亲电中心,即羰基碳和β不饱和碳,当亲核试剂与其作用时,主要(常常是唯一)进攻β不饱和碳,生成β位取代的产物。 此外,常见的区域选择性还有芳香亲电取代反应中苯环定位基表现出来的定位效应;具有多个相同官能团的分子(比如多醇)中这些官能团基于位阻差异体现出来的反应性差异;马氏规则描述的反应选择性等等。.
查看 羟汞化反应和区域选择性
共振 (化学)
共振论是化学中表示分子结构的一种方法,是价键理论的重要组成部分。该方法认为,对于结构无法用一个经典结构式来表达的分子、离子或自由基,可以通过若干经典结构式的共振来表达其结构。共振中的结构并不存在,真实粒子也并非这些共振结构的混合物或是平衡体系,只是价键理论中无法用单一结构式来准确表达物质结构,必须要借助共振的思想。.
克莱森重排反应
克莱森重排反应,又稱作Claisen重排反应,其最初形式是一个烯丙基苯基醚在高温(> 200°C)下发生的一个重排反应,产物是邻位烯丙基苯酚。反应的机理是σ重排(是史上第一个发现的σ重排反应),产物4-烯酮因芳香性的需要互变异构为酚。 这个反应的特点是高度的区域选择性,产物大部分是邻位的。与弗赖斯重排的性质很相似。 而当苯环的两个邻位都被“堵”住的时候,反应产物是对位烯丙基取代物。这是因为中间产物发生了一个科普重排反应所致——“分子自有其道(molecules have a way of hanging on)”。 审视整个过程可以看到:克莱森重排的驱动力是生成热力学上最稳定的取代度最大的“烯烃”。 克莱森重排起初是在芳香化合物中发现的(1912年),这与当时(20世纪初期)合成化学家“玩”的范围局限在芳香烃上有关。到后来发现该反应可以拓展到非芳香化合物,而这种拓展非常重要,因为克莱森重排反应立刻变成了合成上一个非常有用的反应:反应生成了一个新的碳碳键,得到一个4-烯羰基化合物,而烯键可以继续往下做衍生,得到其他的化合物。 而现代有机合成在克莱森反应的启发下催生出众多“变体”: 贝勒斯(Bellus)变体: 埃申莫瑟(Eschenmoser)变体: 艾兰德(Ireland)变体: 强生(Johnson)变体:.
环己烷构象
环己烷构象主要研究环己烷及其相关衍生物的构象,是构象分析的重要内容。.
查看 羟汞化反应和环己烷构象
硼氢化钠
氢化钠是一种无机化合物,分子式NaBH4。硼氢化钠为白色粉末,容易吸水潮解,可溶于水和低级醇,在室温下与甲醇迅速反应生成氢气。在无机合成和有机合成中硼氢化钠常用做还原剂。通常情况下,硼氢化钠无法还原酯,酰胺,羧酸及腈类化合物,但当酯的羰基α位有杂原子存在时例外,可以将酯还原。在与硼氢化钠接触后可能会有有咽喉痛、咳嗽、呼吸急促、头痛、腹痛、腹泻、眩晕、眼结膜充血、疼痛等不良症状。应储藏在阴凉、干燥的仓库中。防潮、防震,不可与无机酸共同储藏或运输,远离热源及易燃物品。.
查看 羟汞化反应和硼氢化钠
硼氢化氧化反应
#重定向 硼氢化-氧化反应.
碳正离子
碳正離子,又稱作碳陽離子,是一個帶有正電的碳原子,其中最簡單的形式為甲基碳正離子CH3+,跟乙基碳陽離子C2H5+。有些碳正離子基會帶有兩個或更多的正電,正電可能會在同一個或是不同的碳上,如乙烯雙陽離子基C2H42+。 直到1970年代早期,碳陽離子都被視為碳離子。在近代的化學中,帶正電的碳原子就視作一個碳陽離子。根據碳原子的價數可以分成兩大類:三價的碳離子(質子化的碳烯),或五到六價的碳離子(質子化的烷類),而命名法為G.A.Olah所發表,碳正離子能藉由分散或离域正電荷來達到穩定。.
查看 羟汞化反应和碳正离子
羟基
基,又称氢氧基,化学式为–OH,是含有氧原子以共價鍵與氫原子連接的化學官能團,有時也稱為醇官能團,是常见的极性基团。羥基基團以共價鍵結合羰基(–C.
查看 羟汞化反应和羟基
烯烃
(alkene)是指含有C.
查看 羟汞化反应和烯烃
烯醇
烯醇(Enol)指的是双键碳上连有羟基的一类化合物,其(下图右)与羰基化合物(下图左)成互变异构: 通常在平衡中烯醇式占的很少。这是由于氧的电负性大于碳,因而碳氧双键更加稳定。 随着α氢的活泼性增大,失去氢后形成的碳负离子稳定性增大,烯醇式也能成为平衡中主要的存在形式。比如1,3-二羰基化合物中烯醇式的比例明显增加。类似的例子还可以是1,1,1-三氟-2,4-戊二酮。 酮式及烯醇式的含量和溶剂的极性也很有关系,非质子溶剂对烯醇式有利,因为可以帮助分子内氢键的形成。如乙酰乙酸乙酯的烯醇式含量在乙醇中为10%-13%,而在正己烷中为49%。 天然存在的维生素C即具有烯二醇的结构,因此维生素C具有酸性,又称为抗坏血酸。.
查看 羟汞化反应和烯醇
炔烃
(alkyne)是一类有机化合物,属于不饱和烃。其官能团为碳-碳三键(-C≡C-)。通式CnH2n-2,其中n為非1正整數。简单的炔烃化合物有乙炔(),丙炔()等。炔烃也被叫做电石气,电石气通常也被用来特指炔烃中最简单的乙炔。 炔字是新造字,左边的火取自“碳”字,表示可以燃烧;右边的夬取自“缺”字,表示氢原子数和化合价比烯烃更加缺少,意味着炔是烷(完整)和烯(稀少)的不饱和衍生物。「炔」的讀音同「缺」。.
查看 羟汞化反应和炔烃
马氏规则
尔科夫尼科夫规则(Markovnikov's Rule / Markownikoff's Rule,简称马氏规则)是有机化学中一个基于扎伊采夫规则的区域选择性经验规则,其内容即:当发生亲电加成反应(如卤化氢和烯烃的反应)时,亲电试剂中的正电基团(如氢)总是加在连氢最多(取代最少)的碳原子上,而负电基团(如卤素)则会加在连氢最少(取代最多)的碳原子上。这个规则是由俄罗斯化学家马尔科夫尼科夫在1870年提出的。Was Markovnikov’s Rule an Inspired Guess? Peter Hughes 1152 Journal of Chemical Education · Vol.
查看 羟汞化反应和马氏规则
醚
醚(漢語拼音:mí,Ether)是具有醚官能团的一类有机化合物。醚官能团是由一个氧原子连接两个烷基或芳基所形成,醚的通式为:R–O–R。它还可看作是醇或酚羟基上的氢被烃基所取代的化合物。 醚类中最典型的化合物属:乙醚,它常用于有机溶剂与医用麻醉剂。由于其在化学中的常用性(乙醚是最常用的醚类提取溶剂),我们还有时将乙醚直接简称为“醚”。醚类化合物的应用常见于有机化学和生物化学,它们还可作为糖类和木质素的连接片段。.
查看 羟汞化反应和醚
醇
醇是有機化合物的一大類,是脂肪烴、脂環烴或芳香烴側鏈中的氫原子被羥基取代而成的化合物。在化學中,醇是任何有機化合物,其中羥基官能團(-OH)被綁定到一個飽和碳原子。通常意义上泛指的醇,是指羟基与一个脂肪族烃基相连而成的化合物;羥基與苯環相連,則由于化学性质与普通的醇有所不同而分类为酚;羥基與sp2雜化的双键碳原子相連,属烯醇类,该类化合物由于会互变异构为醛(只有乙烯醇能變乙醛)或酮,因此大多无法稳定存在。.
查看 羟汞化反应和醇
酮
酮是一类有机化合物,通式RC(.
查看 羟汞化反应和酮
HOMO/LUMO
HOMO和LUMO分别指最高占据分子轨道(Highest Occupied Molecular Orbital)和最低未占分子轨道(Lowest Unoccupied Molecular Orbital)。根据前线轨道理论,两者统称前线轨道。HOMO与LUMO之间的能量差称为「能带隙」,有时可以用来衡量一个分子是否容易被激发:带隙越小,分子越容易被激发。 在有机半导体和量子点中的HOMO与无机半导体中的价带类似,而LUMO则与导带类似。 当分子二聚或高聚时,两个分子的分子轨道之间的相互作用会引起HOMO与LUMO的分裂。当分子相互作用时,每一个能级分裂成彼此能量相距很小的振动能级。当有足够的分子使得这种相互作用足够强烈时(如在高聚物中),这些振动能级的差距变得很小,使得它们的能量几乎可以看成是连续的。这时我们就不再叫它们能级了,而是改称能带。.
有机反应
有机反应即涉及有机化合物的化学反应,是有机合成的基础。几种基本反应类型为:加成反应、消除反应、取代反应、周环反应、重排反应和氧化还原反应。在有机合成当中,有机反应被广泛的应用于各种人造分子的合成。比如药物,塑料,食品添加剂和合成纤维等等。 早期的有机反应,包括有机燃料的燃烧反应,以及制造肥皂所用的皂化反应。当今有机反应已愈发复杂,其中几个获得诺贝尔化学奖的反应为:1912年的格氏反应、1950年的狄尔斯-阿尔德反应、1979年的维蒂希反应、2005年的烯烃复分解反应和2010年的赫克反应。.
查看 羟汞化反应和有机反应
有机氧化还原反应
有机氧化还原反应(Organic redox reaction)指有机反应中的氧化还原反应,是有机氧化反应和有机还原反应的统称。在很多有机氧化还原反应中,电子转移并不实际发生,不同于电化学中的概念 。 常以氧化数或氧化态作为碳原子氧化程度的判断:.
另见
加成反应
- Bouveault醛合成
- Dötz反应
- Fujimoto–Belleau反应
- Hajos–Parrish–Eder–Sauer–Wiechert反应
- Reissert反应
- 伍德沃德顺式双羟基化反应
- 克利安尼-费歇尔合成
- 列福尔马茨基反应
- 加成反应
- 加氫脫烷基反應
- 加特曼反应
- 向山羥醛反應
- 夏普莱斯不对称双羟基化反应
- 安息香缩合反应
- 宾格尔反应
- 巴比耶反應
- 普林斯反应
- 朱利亚烯烃合成
- 樱井反应
- 氢化
- 氢卤化反应
- 氢甲酰化反应
- 水合
- 瑞穆尔-悌曼反应
- 硼氢化-氧化反应
- 科尔贝-施密特反应
- 约翰逊–科里–柴可夫斯基反应
- 羟汞化反应
- 羟醛反应
- 自由基加成
- 親核共軛加成
- 贝里斯-希尔曼反应
- 达参反应
- 达夫反应
- 迈克尔加成反应
- 里特反应
- 频哪醇偶联反应
碳-杂原子键形成反应
- Boudouard反应
- Leimgruber-Batcho吲哚合成
- 克诺尔吡咯合成反应
- 内尼采斯库吲哚合成
- 卤仿反应
- 威廉姆逊合成反应
- 山口反应
- 格氏试剂
- 羟汞化反应
- 肖滕-鲍曼反应
- 重氮偶联反应
- 重氮盐