徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

经典电磁理论的协变形式

指数 经典电磁理论的协变形式

经典电磁理论的协变形式是指将经典的电磁学定律(主要包括馬克士威方程組和洛伦兹力)纳入狭义相对论的框架,利用洛伦兹协变的四维矢量和四维张量写成“外在协变”的形式。这种形式的好处在于,经典的电磁学定律在任意惯性坐标系下具有相同的形式,并能够使场和力在不同惯性系下的变换更加容易表述。 在本文中,闵可夫斯基度规的形式被规定为diag(1, -1, -1, -1)\,,这是参考了John David Jackson所编写的《经典电动力学》中所采用的形式;并且从头彻尾都使用了经典的张量代数以及爱因斯坦求和约定。.

49 关系: 原時偏导数协变导数坡印廷向量安培定律不变质量庫侖規範廣義相對論张量代数弯曲时空中的麦克斯韦方程组張量光速勞侖茲協變性勞侖茲因子四维动量四维速度磁化強度磁化率磁矢势磁感应强度移動中的磁鐵與導體問題真空磁导率真空电容率爱因斯坦求和约定电磁学电磁四维势电流密度牛顿运动定律狭义相对论非齐次的电磁波方程馬克士威方程組馬克士威應力張量高斯定律高斯磁定律达朗贝尔算符電場電導率電勢電磁張量電磁波方程式電磁應力-能量張量電荷電極化連續性方程式法拉第电磁感应定律洛伦兹力惯性参考系應力-能量張量拉格朗日量

原時

原時,或称固有時間,是在相對論中與事件位在同處的時鐘所測量的唯一時間,他不僅取決於事件,時鐘也在事件的行動之中。對同一個事件,一個加速中的時鐘所測得的原時會比在非加速(慣性)中時鐘的原時為短。雙生子佯謬就是其中的一個例子。 相對的,能由一個與事件有一段距離的觀測者來應用。在狹義相對論中,協調時總是由在慣性系統內有關聯的觀測者計算,而原時則由同在加速中的觀測者測量。 在四維時空中,原時類似在三維空間(歐幾里得空間)的弧長。 在習慣上,原時通常使用大寫希臘字母\tau來標示,以與協調時t或T.有所區別。.

新!!: 经典电磁理论的协变形式和原時 · 查看更多 »

偏导数

在数学中,一个多变量的函数的偏导数是它关于其中一个变量的导数,而保持其他变量恒定(相对于全导数,在其中所有变量都允许变化)。偏导数在向量分析和微分几何中是很有用的。 函数f关于变量x的偏导数写为f_x^或\frac。偏导数符号\partial是全导数符号 d的变体,这个符号是阿德里安-马里·勒让德引入的,并在雅可比的重新引入后得到普遍接受。.

新!!: 经典电磁理论的协变形式和偏导数 · 查看更多 »

协变导数

#重定向 协变微商.

新!!: 经典电磁理论的协变形式和协变导数 · 查看更多 »

坡印廷向量

坡印廷向量(Poynting vector),亦称能流密度矢量,其方向為電磁能傳遞方向,大小為能流密度(单位面积的能量传输速率)。坡印廷矢量的SI单位是瓦特每平方米(W/m2)。它是以其发現者约翰·亨利·坡印廷來命名的。奧利弗·黑維塞 和尼科莱·乌诺夫亦獨立發現所謂的坡印廷向量。.

新!!: 经典电磁理论的协变形式和坡印廷向量 · 查看更多 »

安培定律

安培定律(Ampère's circuital law),又稱安培環路定律,是由安德烈-瑪麗·安培於1826年提出的一條靜磁學基本定律。安培定律表明,載流導線所載有的電流,與磁場沿著環繞導線的閉合迴路的路徑積分,兩者之間的關係為 其中,\mathbb是環繞著導線的閉合迴路,\mathbf是磁場(又稱為B場),d\boldsymbol是微小線元素向量,\mu_0是磁常數,I_是閉合迴路\mathbb所圍住的電流。 1861年,詹姆斯·馬克士威又將這方程式重新推導一遍,使得符合電動力學條件,並且發表結果於論文《論物理力線》內。馬克士威認為,含時電場會生成磁場,假若電場含時間,則前述安培定律方程式不成立,必須加以修正。經過修正後,新的方程式稱為馬克士威-安培方程式,是馬克士威方程組中的一個方程式,以積分形式表示為 其中,\mathbb是邊緣為\mathbb的任意曲面,\mathbf是穿過曲面\mathbb的電流的電流密度,\mathbf是電位移,d\mathbf是微小面元素向量。.

新!!: 经典电磁理论的协变形式和安培定律 · 查看更多 »

不变质量

不变质量(invariant mass)或称内秉质量(intrinsic mass)、固有质量(proper mass),亦常简称为质量,指的是一个物体或一个物体系统由总能量和动量构成的在所有参考系下都相同的一个洛仑兹不变量。当这个系统作为整体保持静止时,不变质量等于系统的总能量除以光速的平方,这也等于这个系统在一个与之相对静止的秤上称得的质量。如果系统由一个单一粒子组成,不变质量也称作这个粒子的静止质量。 由于一个孤立系统的质心总保持匀速直线运动,因此观察者总可以选择这样一个参考系,使系统在这一参考系中的总动量为零,即相对这个参考系为静止。这样的参考系称作质心系,这时系统的不变质量就等于系统的总能量除以光速的平方。这个於质心系下的总能量,可以被看作是系统在不同惯性系下可能被观测到所具有能量的“最小值”。 在多粒子系统的情形下,质心系中的粒子彼此之间可能会存在相对运动,并有可能存在一种或多种基本相互作用。这时粒子的动能和力场的势能会增大系统的总能量,使之大于所有粒子的静止质量之和,这部分能量也对系统的不变质量有贡献。.

新!!: 经典电磁理论的协变形式和不变质量 · 查看更多 »

庫侖規範

库仑规范(Coulomb gauge)是一种横场条件,定义为\nabla\cdot\mathbf.

新!!: 经典电磁理论的协变形式和庫侖規範 · 查看更多 »

廣義相對論

广义相对论是現代物理中基于相对性原理利用几何语言描述的引力理论。该理论由阿尔伯特·爱因斯坦等人自1907年开始发展,最终在1915年基本完成。广义相对论将经典的牛顿万有引力定律與狭义相对论加以推廣。在广义相对论中,引力被描述为时空的一种几何属性(曲率),而时空的曲率则通过爱因斯坦场方程和处于其中的物质及辐射的能量與动量联系在一起。 从广义相对论得到的部分预言和经典物理中的对应预言非常不同,尤其是有关时间流易、空间几何、自由落体的运动以及光的传播等问题,例如引力场内的时间膨胀、光的引力红移和引力时间延迟效应。广义相对论的预言至今为止已经通过了所有观测和实验的验证——广义相对论虽然并非当今描述引力的唯一理论,但却是能够与实验数据相符合的最简洁的理论。不过仍然有一些问题至今未能解决。最为基础的即是广义相对论和量子物理的定律应如何统一以形成完备并且自洽的量子引力理论。 爱因斯坦的广义相对论理论在天体物理学中有着非常重要的应用。比如它预言了某些大质量恒星终结后,会形成时空极度扭曲以至于所有物质(包括光)都无法逸出的区域,黑洞。有证据表明恒星质量黑洞以及超大质量黑洞是某些天体例如活动星系核和微类星体发射高强度辐射的直接成因。光线在引力场中的偏折会形成引力透镜现象,这使得人们可能观察到处于遥远位置的同一个天体形成的多个像。广义相对论还预言了引力波的存在。引力波已经由激光干涉引力波天文台在2015年9月直接观测到。此外,广义相对论还是现代宇宙学中的的理论基础。.

新!!: 经典电磁理论的协变形式和廣義相對論 · 查看更多 »

张量代数

在数学中,一个向量空间V的张量代数(tensor algebra),记作T(V)或T·(V),是V上的(任意阶)张量的代数,其乘法为张量积。张量代数左伴随于从代数到向量空间的遗忘函子,在这种意义下它是V上的自由代数;在相应的泛性质的意义下,它是包含V的“最一般的代数”(见下)。 张量代数也具有余代数结构。 注:本文中所有代数都假设是有单位的且结合。.

新!!: 经典电磁理论的协变形式和张量代数 · 查看更多 »

弯曲时空中的麦克斯韦方程组

物理学中,弯曲时空中的麦克斯韦方程组(Maxwell's equations in curved spacetime)制约着弯曲时空(其间的度规可能不是闵可夫斯基性的)中的电磁场的动力学。它们可以被认为是真空中的麦克斯韦方程组在广义相对论框架中的扩展,而真空中的麦克斯韦方程组只是一般化的麦克斯韦方程组在局部平直时空中的特殊形式。但由于在广义相对论中电磁场本身的存在也会引起时空的弯曲,因此真空中的麦克斯韦方程组应被理解为一种出于方便的近似形式。 然而,这种形式的麦克斯韦方程组仅仅对真空情形下的麦克斯韦方程组有用,这也被称作“微观”麦克斯韦方程组。对于宏观上与各向异性的物质相关的麦克斯韦方程组,物质的存在会建立一个参考系从而使方程组不再是协变的。 阅读本条目需要读者了解平直时空中电磁理论的四维形式。 电磁场本身要求其几何描述与坐标选取无关,而麦克斯韦方程组在任何时空中的几何描述都是一样的,而不管这个时空是否是平直的。同时,当使用非笛卡尔的局部坐标时平直闵可夫斯基空间中的方程组会做同样的修改。例如本条目中方程组可以写成球坐标中的麦克斯韦方程组的形式。基于上述原因,更好的理解方法是将闵可夫斯基空间中的麦克斯韦方程组理解为一种特殊形式,而非将弯曲时空中的麦克斯韦方程组理解为一种相对论化的推广。.

新!!: 经典电磁理论的协变形式和弯曲时空中的麦克斯韦方程组 · 查看更多 »

張量

張量(tensor)是一个可用來表示在一些向量、純量和其他張量之間的線性關係的多线性函数,這些線性關係的基本例子有內積、外積、線性映射以及笛卡儿积。其坐标在 n  維空間內,有  n^r個分量的一種量,其中每個分量都是坐標的函數,而在坐標變換時,這些分量也依照某些規則作線性變換。r稱為該張量的秩或階(与矩阵的秩和阶均无关系)。 在同构的意义下,第零階張量(r.

新!!: 经典电磁理论的协变形式和張量 · 查看更多 »

光速

光速,指光在真空中的速率,是一個物理常數,一般記作,精確值為(≈ m/s)。這一數值之所以是精確值,是因為米的定義就是基於光速和國際時間標準上的。根據狹義相對論,宇宙中所有物質和訊息的運動和傳播速度都不能超過。光速也是所有無質量粒子及對應的場波動(包括電磁輻射和引力波等)在真空中運行的速度。這一速度獨立於射源運動以及觀測者所身處的慣性參考系。在相對論中,起到把時間和空間聯繫起來的作用,並且出現在廣為人知的質能等價公式中:.

新!!: 经典电磁理论的协变形式和光速 · 查看更多 »

勞侖茲協變性

物理學中,勞侖茲協變性(Lorentz covariance)是時空的一個關鍵性質,出自於狹義相對論,適用於全域性的場合。局域勞侖茲協變性(Local Lorentz covariance)所指為僅「局域」於各點附近無限小時空區域的勞侖茲協變性,此則出於廣義相對論。勞侖茲協變性有兩個不同、但緊密關聯的意義:.

新!!: 经典电磁理论的协变形式和勞侖茲協變性 · 查看更多 »

勞侖茲因子

--因子是一个出現在狹義相對論中的速記因子,得名於荷兰物理学家亨德里克·洛伦兹,被用于计算時間膨脹、长度收缩、相对论质量等相對論效應。.

新!!: 经典电磁理论的协变形式和勞侖茲因子 · 查看更多 »

四维动量

狭义相对论和广义相对论中,四维动量(英文:four-momentum)是经典的三维动量在四维时空中的相对论化形式。动量是三维空间中的矢量,而类似地四维动量是时空中的四维矢量。引入四维动量的原因是它在洛伦兹变换下是協變性的。对于一个具有三维动量\vec p.

新!!: 经典电磁理论的协变形式和四维动量 · 查看更多 »

四维速度

四维速度(Four-velocity)是指物理学中,特别是狭义相对论和广义相对论中,一个物体的四维速度是取代经典意义上的速度(三维矢量)的四维矢量(四维时空中的矢量)。选取四维速度的原因是四维速度在洛伦兹变换下是协变的,而三维速度不是;换句话说,这么选取可以使光速在任意惯性系下保持不变。 相对论理论中一个事件是在四维时空内的坐标描述的,一个物体在时空中运动产生的轨迹曲线是通过固有时这个参数实现参数化的,而这条曲线称作世界线。四维速度是一维时间与三维空间坐标对固有时的改变率所构成的矢量,同时也是世界线的切向矢量。 作为比较,在经典力学中事件是通过它们在每一时刻上在三维空间中的坐标描述的,它们在三维空间中的轨迹是通过时间这个参数实现参数化的。经典速度是三维空间坐标对时间的改变率所构成的矢量,同时也是轨迹的切向矢量。 在狭义相对论的框架中,四维速度的大小(模)总是和光速的大小相等。.

新!!: 经典电磁理论的协变形式和四维速度 · 查看更多 »

磁化強度

磁化強度(magnetization),又稱磁化向量,是衡量物體的磁性的一個物理量,定義為單位體積的磁偶極矩,如下方程式: 其中,\mathbf 是磁化強度,n 是磁偶極子密度,\mathbf 是每一個磁偶極子的磁偶極矩。 當施加外磁場於物質時,物質的內部會被磁化,會出現很多微小的磁偶極子。磁化強度描述物質被磁化的程度。採用國際單位制,磁化強度的單位是安培/公尺。 物質被磁化所產生的磁偶極矩有兩種起源。一種是由在原子內部的電子,由於外磁場的作用,其軌域運動產生的磁矩會做拉莫爾進動,從而產生的額外磁矩,累積凝聚而成。另外一種是在外加靜磁場後,物質內的粒子自旋發生「磁化」,趨於依照磁場方向排列。這些自旋構成的磁偶極子可視為一個個小磁鐵,可以以向量表示,作為自旋相關磁性分析的古典描述。例如,用於核磁共振現象中自旋動態的分析。 物質對於外磁場的響應,和物質本身任何已存在的磁偶極矩(例如,在鐵磁性物質內部的磁偶極矩),綜合起來,就是淨磁化強度。 在一個磁性物質的內部,磁化強度不一定是均勻的,磁化強度時常是位置向量的函數。.

新!!: 经典电磁理论的协变形式和磁化強度 · 查看更多 »

磁化率

在電磁學中,磁化率(magnetic susceptibility)是表徵物質在外磁場中被磁化程度的物理量。.

新!!: 经典电磁理论的协变形式和磁化率 · 查看更多 »

磁矢势

磁矢势,又稱磁位、磁勢(magnetic potential),通常標記為 \mathbf 。磁向量勢的旋度是磁場,以方程式表示 其中,\mathbf 是磁場。 直觀而言,磁向量勢似乎不及磁場來得「自然」、「基本」,而在一般電磁學教科書亦多以磁場來定義磁向量勢。以前,很多學者認為磁向量勢並沒有實際意義,只是人為的物理量,除了方便計算以外,別無其它用途。但是,詹姆斯·馬克士威頗不以為然,他認為磁向量勢可以詮釋為「每單位電荷儲存的能量」,就好像電勢被詮釋為「每單位電荷儲存的能量」。相關論述,稍後會有更詳盡解釋。 磁向量勢並不是唯一定義的;其數值是相對的,相對於某設定數值。因此,學者會疑問到底儲存了多少動量?不論如何,磁向量勢確實具有實際意義。尤其是在量子力學裏,於1959年,阿哈諾夫-波姆效應闡明,假設一個帶電粒子移動經過某零電場、零磁場、非零磁向量勢場區域,則此帶電粒子的波函數相位會有所改變,因而導致可觀測到的干涉現象 。現在,越來越多學者認為電勢和磁向量勢比電場和磁場更基本。不單如此,有學者認為,甚至在經典電磁學裏,磁向量勢也具有明確的意義和直接的測量值。 磁向量勢與電勢可以共同用來設定電場與磁場。許多電磁學的方程式可以以電場與磁場寫出,或者以磁向量勢與電勢寫出。較高深的理論,像量子力學理論,偏好使用的是磁向量勢與電勢,而不是電場與磁場。因為,在這些學術領域裏所使用的拉格朗日量或哈密頓量,都是以磁向量勢與電勢表達,而不是以電場與磁場表達。 開爾文男爵最先於1851年引入磁向量勢的概念,並且給定磁向量勢與磁場之間的關係。.

新!!: 经典电磁理论的协变形式和磁矢势 · 查看更多 »

磁感应强度

磁感应强度也被称为磁通量密度或磁通密度,是一个表示贯穿一个标准面积的磁通量的物理量,其符号是B,國際單位制導出單位是T。 此物理量也常被稱為磁場,例如在核磁共振、磁振造影等領域,此命名歧異參見磁場。.

新!!: 经典电磁理论的协变形式和磁感应强度 · 查看更多 »

移動中的磁鐵與導體問題

移動中的磁鐵跟導體問題(moving magnet and conductor problem)是一個源自於19世紀的著名思想實驗,涉及到經典電磁學與狹義相對論(classical electromagnetism and special relativity)的交叉領域。在這問題裏,相對於磁鐵的參考系,導體以均勻速度 v 移動。從磁鐵的參考系與導體的參考系分別觀測,流動於導體的電流相同。這事實遵守基本「相對性原理」:沒有絕對靜止標準,只可以觀測到相對運動。但是,根據馬克士威方程組和勞侖茲力定律,導體的電荷,在磁鐵參考系會感受到磁場力,而在導體參考系會感受到電場力。從不同的參考系觀測,同樣的物理現象竟會出現大相逕庭的描述。這問題與邁克生-莫立實驗啟發了阿爾伯特·愛因斯坦的相對論。.

新!!: 经典电磁理论的协变形式和移動中的磁鐵與導體問題 · 查看更多 »

真空磁导率

真空磁导率(\mu_0),又称磁场常数、磁常數、自由空間磁导率或磁常數是一物理常數,指真空中的磁导率。实验测得这个数值是一个普适的常数,联系着力学和电磁学的测量。真空磁导率是由運動中的帶電粒子或電流產生磁場的公式中產生,也出現在其他真空中產生磁場的公式中,在国际单位制中,其數值為 真空磁导率是一個常數,也可以定義為一個基礎的不變量,是真空中馬克士威方程組中出現的常數之一。在經典力學中,自由空間是電磁理論中的一個概念,對應理論上完美的真空,有時稱為「自由空間真空」或「經典真空」 : 在真空中,磁场常数是磁感应强度和磁场强度的比率: 真空磁导率 \mu_0 和真空电容率 \varepsilon_0 以及光速的关系为c^2\varepsilon_0\mu_0.

新!!: 经典电磁理论的协变形式和真空磁导率 · 查看更多 »

真空电容率

真空电容率,又称为真空介电系数,或電常數,是一个常见於电磁学的物理常数,符号为\epsilon_0\,\!。在国际单位制裏,真空电容率的數值为: 真空電容率\epsilon_0\,\!可以用公式定義為 其中,c_0\,\!是光波傳播於真空的光速,\mu_0\,\!是真空磁導率。 採用國際單位制,光速的數值定義為 299\ 792\ 458\,\!公尺/秒,真空磁導率的數值定義為 4\pi\times 10^\,\! 亨利/公尺。因此,\epsilon_0\,\!的數值也是個定義值。但是,由於\pi\,\!是個無理數;所以,\epsilon_0\,\!只能近似為 這些數值都可以在2006 CODATA報告裏找到。 真空電容率出現於電位移\mathbf\,\!的定義式: 其中,\mathbf\,\!是電場,\mathbf\,\!是電介質的經典電極化強度。 學術界常遇到一個錯誤的觀點,就是認為真空電容率\epsilon_0\,\!是一個可實現真空的一個物理性質。正確的觀點應該為,\epsilon_0\,\!是一個度量系統常數,是由國際公約發表和定義而產生的結果。\epsilon_0\,\!的定義值是由光波在參考系統的光速或基準(benchmark)光速的衍生而得到的數值。這參考系統稱為自由空間,被用為在其它各種介質的測量結果的比較基線。可實現真空,像外太空、超高真空(ultra high vacuum)、量子色動真空(QCD vacuum)、量子真空(quantum vacuum)等等,它們的物理性質都只是實驗和理論問題,應與\epsilon_0\,\!分題而論。\epsilon_0\,\!的含義和數值是一個度量衡學(metrology)問題,而不是關於可實現真空的問題。為了避免產生混淆,許多標準組織現在都傾向於採用電常數為\epsilon_0\,\!的名稱。.

新!!: 经典电磁理论的协变形式和真空电容率 · 查看更多 »

爱因斯坦求和约定

在數學裏,特別是將線性代數套用到物理時,愛因斯坦求和約定(Einstein summation convention)是一種標記的約定,又稱為愛因斯坦標記法(Einstein notation),在處理關於坐標的方程式時非常有用。這約定是由阿爾伯特·愛因斯坦於1916年提出的。後來,愛因斯坦與友人半開玩笑地說:「這是數學史上的一大發現,若不信的話,可以試著返回那不使用這方法的古板日子。」 按照愛因斯坦求和約定,當一個單獨項目內有標號變數出現兩次,一次是上標,一次是下標時,則必須總和所有這單獨項目的可能值。通常而言,標號的標值為1、2、3(代表維度為三的歐幾里得空間),或0、1、2、3(代表維度為四的時空或閔可夫斯基時空)。但是,標值可以有任意值域,甚至(在某些應用案例裏)無限集合。這樣,在三維空間裏, 的意思是 請特別注意,上標並不是指數,而是標記不同坐標。例如,在直角坐標系裏,x^1\,\!、x^2\,\!、x^3\,\!分別表示x\,\!坐標、y\,\!坐標、z\,\!坐標,而不是x\,\!、x\,\!的平方、x\,\!的立方。.

新!!: 经典电磁理论的协变形式和爱因斯坦求和约定 · 查看更多 »

电磁学

电磁学(英語:electromagnetism)是研究电磁力(電荷粒子之间的一种物理性相互作用) 的物理学的一个分支。电磁力通常表现为电磁场,如電場、磁場和光。电磁力是自然界中四种基本相互作用之一。其它三种基本相互作用是强相互作用、弱相互作用、引力。 電學與磁學領域密切相關。電磁學可以廣義地包含電學和磁學,但狹義來說是探討電與磁彼此之間相互關係的一門學科。 英文单词electromagnetism是两个希腊语词汇ἢλεκτρον(ēlektron,“琥珀”)和μαγνήτης(magnetic源自"magnítis líthos"(μαγνήτης λίθος),意思是“镁石”,一种铁矿)的合成词。研究电磁现象的科学是用电磁力定义的,有时称作洛伦兹力,是既含有電也含有磁的现象。 电磁力在决定日常生活中大多数物体的内部性质中发挥着主要作用。常见物体的电磁力表现在物体中单个分子之间的分子间作用力的结果中。电子被电磁波力学束缚在原子核周围形成原子,而原子是分子的构成单位。相邻原子的电子之间的相互作用产生化學过程,是由电子间的电磁力与动量之间的相互作用决定的。 电磁场有很多种数学描述。在经典电磁学中,电场用欧姆定律中的電勢与电流描述,磁場与电磁感应和磁化强度相关,而馬克士威方程組描述了由电场和磁场自身以及电荷和电流引起的电场和磁场的产生和交替。 电磁学理论意义,特别是基于“媒介”中的传播的性质(磁导率和电容率)确立的光速,推动了1905年阿尔伯特·爱因斯坦的狭义相对论的发展。 虽然电磁力被认为是四大基本作用力之一,在高能量中弱力和电磁力是统一的。在宇宙的历史中的夸克時期,电弱力分割成电磁力和弱力。.

新!!: 经典电磁理论的协变形式和电磁学 · 查看更多 »

电磁四维势

电磁四维势(英文:Electromagnetic four-potential)是电磁理论中的一个协变四维矢量,它在国际单位制中的单位是伏特·秒/米(在厘米-克-秒制中的单位是馬克士威/厘米),它的定义为(括号中表示在厘米-克-秒制中的形式,下同) 其中\phi\,是电势,\vec A\,是磁矢势。 在本篇文章裏,閔可夫斯基度規的形式被規定為 diag(1, -1, -1, -1) ,這是参考了約翰·傑克森(John D. Jackson)的著作《經典電動力學》中所採用的形式;並且使用了經典的張量代数以及愛因斯坦求和約定。 电场与磁场和相应的标势与矢势的对应关系分别为 将这两个势写在一起的原因是A_是协变的,这意味着它在任意的曲面坐标变换下和一个标量的梯度变换方式相同,即如\frac\,,的变换形式。这样四维势的内积 在任意惯性系下都是一个不变量。 不过,电场与磁场和相应的标势与矢势的对应关系并不是唯一的,通常可以对这两个势做如下的变换: 这组变换称作规范变换,在规范变换下电场和磁场仍然保持不变,因此相应的电标势和磁矢势并没有确定下来。 人们习惯在惯性参考系中采用洛伦茨规范条件\partial_ A^.

新!!: 经典电磁理论的协变形式和电磁四维势 · 查看更多 »

电流密度

在電磁學裏,電流密度(current density)是電荷流動的密度,即每單位截面面積電流量。電流密度是一種向量,一般以符號\mathbf表示。採用國際單位制,電流密度的單位是安培/公尺2(ampere/meter2,A/m2)。.

新!!: 经典电磁理论的协变形式和电流密度 · 查看更多 »

牛顿运动定律

牛頓運動定律(Newton's laws of motion)描述物體與力之間的關係,被譽為是經典力學的基礎。這定律是英國物理泰斗艾薩克·牛頓所提出的三條運動定律的總稱,其現代版本通常這樣表述:.

新!!: 经典电磁理论的协变形式和牛顿运动定律 · 查看更多 »

狭义相对论

-- 狭义相对论(英文:Special relativity)是由爱因斯坦、洛仑兹和庞加莱等人创立的,應用在惯性参考系下的时空理论,是对牛顿时空观的拓展和修正。爱因斯坦在1905年完成的《論動體的電動力學》論文中提出了狭义相对论Albert Einstein (1905) "", Annalen der Physik 17: 891; 英文翻譯為George Barker Jeffery和 Wilfrid Perrett翻譯的(1923); 另一版英文翻譯為Megh Nad Saha翻譯的On the Electrodynamics of Moving Bodies(1920).

新!!: 经典电磁理论的协变形式和狭义相对论 · 查看更多 »

非齐次的电磁波方程

局域化的時變电荷和电流密度在真空中是电磁波的源。在有源的情形下,麦克斯韦方程组可以写成一个非齐次的电磁波方程(英文:Inhomogeneous electromagnetic wave equation)的形式,正是因为波源的存在使得偏微分方程变为非齐次。.

新!!: 经典电磁理论的协变形式和非齐次的电磁波方程 · 查看更多 »

馬克士威方程組

克士威方程組(Maxwell's equations)是一組描述電場、磁場與電荷密度、電流密度之間關係的偏微分方程。該方程組由四個方程式組成,分別是描述电荷如何产生电场的高斯定律、表明磁单极子不存在的高斯磁定律、解釋时变磁场如何产生电场的法拉第感应定律,以及說明电流和时变电场怎样产生磁场的馬克士威-安培定律。馬克士威方程組是因英国物理学家詹姆斯·馬克士威而命名。馬克士威在19世紀60年代構想出這方程組的早期形式。 在不同的領域會使用到不同形式的馬克士威方程組。例如,在高能物理學與引力物理學裏,通常會用到時空表述的馬克士威方程組版本。這種表述建立於結合時間與空間在一起的愛因斯坦時空概念,而不是三維空間與第四維時間各自獨立展現的牛頓絕對時空概念。愛因斯坦的時空表述明顯地符合狹義相對論與廣義相對論。在量子力學裏,基於電勢與磁勢的馬克士威方程組版本比較獲人們青睞。 自從20世紀中期以來,物理學者已明白馬克士威方程組不是精確规律,精確的描述需要藉助更能顯示背後物理基礎的量子電動力學理論,而馬克士威方程組只是它的一種經典場論近似。儘管如此,對於大多數日常生活中涉及的案例,通過馬克士威方程組計算獲得的解答跟精確解答的分歧甚為微小。而對於非經典光、雙光子散射、量子光學與許多其它與光子或虛光子相關的現象,馬克士威方程組不能給出接近實際情況的解答。 從馬克士威方程組,可以推論出光波是電磁波。馬克士威方程組和勞侖茲力方程式是經典電磁學的基礎方程式。得益于這一組基礎方程式以及相關理論,許多現代的電力科技與電子科技得以被發明并快速發展。.

新!!: 经典电磁理论的协变形式和馬克士威方程組 · 查看更多 »

馬克士威應力張量

在電磁學裏,馬克士威應力張量(Maxwell stress tensor)是描述電磁場帶有之應力的二階張量。馬克士威應力張量可以表現出電場力、磁場力和機械動量之間的相互作用。對於簡單的狀況,例如一個點電荷自由地移動於均勻磁場,應用勞侖茲力定律,就可以很容易地計算出點電荷所感受的作用力。但是,當遇到稍微複雜一點的狀況時,這很普通的程序會變得非常困難,方程式洋洋灑灑地一行又一行的延續。因此,物理學家通常會聚集很多項目於馬克士威應力張量內,然後使用張量數學來解析問題。.

新!!: 经典电磁理论的协变形式和馬克士威應力張量 · 查看更多 »

高斯定律

斯定律(Gauss' law)表明在闭合曲面内的电荷分佈與產生的電場之間的關係:.

新!!: 经典电磁理论的协变形式和高斯定律 · 查看更多 »

高斯磁定律

在電磁學裏,高斯磁定律闡明,磁場的散度等於零。因此,磁場是一個螺線向量場。從這事實,可以推斷磁單極子不存在。磁的基本實體是磁偶極子,而不是磁荷。當然,假若將來科學家發現有磁單極子存在,那麼,這定律就必須做適當的修改,如稍後論述。高斯磁定律是因德國物理學者卡爾·高斯而命名。 在物理學界,很多學者使用「高斯磁定律」來指稱這定律,但並不是每一位學者都採用這名字。有些作者稱它為「自由磁單極子缺失」,或明確地表示這定律沒有取名字。還有些作者稱此定律為「橫向性要求」,因為在真空中或線性介質中傳播的電磁波必須是橫波。.

新!!: 经典电磁理论的协变形式和高斯磁定律 · 查看更多 »

达朗贝尔算符

达朗贝尔算子是拉普拉斯算子在闵可夫斯基时空中的形式,此算子符號為正方形的,以表示是在四維的闵可夫斯基时空中。.

新!!: 经典电磁理论的协变形式和达朗贝尔算符 · 查看更多 »

電場

電場是存在于电荷周围能传递电荷与电荷之间相互作用的物理场。在电荷周围总有电场存在;同时电场对场中其他电荷发生力的作用。观察者相对于电荷静止时所观察到的场称为静电场。如果电荷相对于观察者运动,则除静电场外,还有磁场出现。除了电荷以外,隨著時間流易而变化的磁场也可以生成电场,這種電場叫做涡旋电场或感应电场。迈克尔·法拉第最先提出電場的概念。.

新!!: 经典电磁理论的协变形式和電場 · 查看更多 »

電導率

电导率(electric conductivity)是表示物质传输电流能力强弱的一种測量值。當施加電壓於導體的兩端時,其電荷載子會呈現朝某方向流動的行為,因而產生電流。電導率 \sigma\,\! 是以歐姆定律定義為電流密度 \mathbf\,\! 和電場強度 \mathbf\,\! 的比率: 有些物質會有異向性 (anisotropic) 的電導率,必需用 3 X 3 矩陣來表達(使用數學術語,第二階張量,通常是對稱的)。 電導率是电阻率 \rho\,\! 的倒數。在國際單位制中的單位是西門子/公尺 (S·m-1): 電導率儀 (electrical conductivity meter) 是一種是用來測量溶液電導率的儀器。.

新!!: 经典电磁理论的协变形式和電導率 · 查看更多 »

電勢

在静電學裡,電勢(electric potential)定義為處於電場中某个位置的單位電荷所具有的電勢能。電勢又稱為電位,是純量。其數值不具有絕對意義,只具有相對意義,因此為了便於分析問題,必須設定一個參考位置,並把它設為零,稱為零勢能點。通常,會把無窮遠處的電勢設定為零。那麼,電勢可以定義如下:假設檢驗電荷從無窮遠位置,經過任意路徑,克服電場力,緩慢地移動到某位置,則在這位置的電勢,等於因遷移所做的機械功與檢驗電荷量的比值。在國際單位制裏,電勢的度量單位是伏特(Volt),是為了紀念意大利物理學家亞歷山德羅·伏打(Alessandro Volta)而命名。 電勢必需滿足帕松方程式,同時符合相關邊界條件;假設在某區域內的電荷密度為零,則帕松方程式約化為拉普拉斯方程式,電勢必需滿足拉普拉斯方程式。 在電動力學裏,當含時電磁場存在的時候,電勢可以延伸為「廣義電勢」。特別注意,廣義電勢不能被視為電勢能每單位電荷。.

新!!: 经典电磁理论的协变形式和電勢 · 查看更多 »

電磁張量

電磁張量(electromagnetic tensor)或電磁場張量(electromagnetic field tensor)(有時也稱作場強度張量(field strength tensor)、法拉第張量(Faraday tensor)或馬克士威雙向量(Maxwell bivector))是一個描述一物理系統中電磁場的數學客體,所根據的是馬克士威的電磁學理論。場張量是在赫爾曼·閔可夫斯基提出狹義相對論的四維張量形式之後被首次使用。.

新!!: 经典电磁理论的协变形式和電磁張量 · 查看更多 »

電磁波方程式

在電磁學裏,電磁波方程式(英語:Electromagnetic wave equation)乃是描述電磁波傳播於介質或真空的二階微分方程式。電磁波的波源是局域化的含時電荷密度和電流密度,假若波源為零,則電磁波方程式約化為二階。這方程式的形式,以電場\mathbf\,\!和磁場\mathbf\,\!來表達為 其中,\nabla^2\,\!是拉普拉斯算符,c\,\!是電磁波在真空或介質中傳播的速度,t\,\!是時間。 由於光波就是電磁波,c\,\!也是光波傳播的速度,稱為光速。在真空裏,c.

新!!: 经典电磁理论的协变形式和電磁波方程式 · 查看更多 »

電磁應力-能量張量

物理學中,電磁應力-能量張量是指由電磁場貢獻於應力-能量張量(又稱能量-動量張量)的部份。在自由空間中,以國際單位制之單位可表示成: 若以明顯的矩陣形式,可寫為: S_x & -\sigma_ & -\sigma_ & -\sigma_ \\ S_y & -\sigma_ & -\sigma_ & -\sigma_ \\ S_z & -\sigma_ & -\sigma_ & -\sigma_ \end, 其中 B_i B_j - \frac \left(\right)\delta _. 注意到c^2.

新!!: 经典电磁理论的协变形式和電磁應力-能量張量 · 查看更多 »

電荷

在電磁學裡,電荷(electric charge)是物質的一種物理性質。稱帶有電荷的物質為「帶電物質」。兩個帶電物質之間會互相施加作用力於對方,也會感受到對方施加的作用力,所涉及的作用力遵守庫侖定律。电荷分为两种,「正电荷」与「负电荷」。带有正电荷的物质称为「带正电」;带有负电荷的物质称为「带负电」。假若两个物质都带有正电或都带有负电,则称这两个物质「同电性」,否则称这两个物质「异电性」。两个同电性物质会相互感受到对方施加的排斥力;两个异电性物质会相互感受到对方施加的吸引力。 电荷是许多次原子粒子所拥有的一种基本守恒性质。称带有电荷的粒子为「带电粒子」。电荷决定了带电粒子在电磁方面的物理行为。静止的带电粒子会产生电场,移动中的带电粒子会产生电磁场,带电粒子也会被电磁场所影响。一个带电粒子与电磁场之间的相互作用称为电磁力或电磁交互作用。这是四种基本交互作用中的一种。.

新!!: 经典电磁理论的协变形式和電荷 · 查看更多 »

電極化

在经典电磁学裏,當給電介質施加一個電場時,由於電介質內部正負電荷的相對位移,會產生電偶極子,這現象稱為電極化(electric polarization)。施加的電場可能是外電場,也可能是嵌入電介質內部的自由電荷所產生的電場。因為電極化而產生的電偶極子稱為“感應電偶極子”,其電偶極矩稱為“感應電偶極矩”。 電極化強度又稱為「電極化矢量」,定義為電介質內的電偶極矩密度,也就是單位體積的電偶極矩。這定義所指的電偶極矩包括永久電偶極矩和感應電偶極矩。它的國際單位制度量單位是庫侖每平方米(coulomb/m2),表示为矢量 P。McGraw Hill Encyclopaedia of Physics (2nd Edition), C.B. Parker, 1994, ISBN 0-07-051400-3.

新!!: 经典电磁理论的协变形式和電極化 · 查看更多 »

連續性方程式

在物理學裏,連續性方程式(continuity equation)乃是描述守恆量傳輸行為的偏微分方程式。由於在各自適當條件下,質量、能量、動量、電荷等等,都是守恆量,很多種傳輸行為都可以用連續性方程式來描述。 連續性方程式乃是定域性的守恆定律方程式。與全域性的守恆定律相比,這種守恆定律比較強版。在本條目內的所有關於連續性方程式的範例都表達同樣的點子──在任意區域內某種守恆量總量的改變,等於從邊界進入或離去的數量;守恆量不能夠增加或減少,只能夠從某一個位置遷移到另外一個位置。 每一種連續性方程式都可以以積分形式表達(使用通量積分),描述任意有限區域內的守恆量;也可以以微分形式表達(使用散度算符),描述任意位置的守恆量。應用散度定理,可以從微分形式推導出積分形式,反之亦然。.

新!!: 经典电磁理论的协变形式和連續性方程式 · 查看更多 »

法拉第电磁感应定律

法拉第電磁感應定律(Faraday's law of electromagnetic induction)是電磁學中的一條基本定律,跟變壓器、電感元件及多種發電機的運作有密切關係。定律指出: 此定律於1831年由迈克尔·法拉第發現,約瑟·亨利則是在1830年的獨立研究中比法拉第早發現這一定律,但其並未發表此發現。故這個定律被命名為法拉第定律。 本定律可用以下的公式表达: 其中: 電動勢的方向(公式中的負號)由楞次定律提供。“通過電路的磁通量”的意義會由下面的例子闡述。 傳統上有兩種改變通過電路的磁通量的方式。至於感應電動勢時,改變的是自身的電場,例如改變生成場的電流(就像變壓器那樣)。而至於動生電動勢時,改變的是磁場中的整個或部份電路的運動,例如像在同極發電機中那樣。.

新!!: 经典电磁理论的协变形式和法拉第电磁感应定律 · 查看更多 »

洛伦兹力

在電動力學裏,勞侖茲力(Lorentz force)是運動於電磁場的帶電粒子所感受到的作用力。勞侖茲力是因荷蘭物理學者亨德里克·勞侖茲而命名。根據勞侖茲力定律,勞侖茲力可以用方程式,稱為勞侖茲力方程式,表達為 其中,\mathbf是勞侖茲力,q是帶電粒子的電荷量,\mathbf是電場强度,\mathbf是帶電粒子的速度,\mathbf是磁感应强度。 勞侖茲力定律是一個基本公理,不是從別的理論推導出來的定律,而是由多次重複完成的實驗所得到的同樣的結果。 感受到電場的作用,正電荷會朝著電場的方向加速;但是感受到磁場的作用,按照右手定則,正電荷會朝著垂直於速度\mathbf和磁場\mathbf的方向彎曲(詳細地說,假設右手的大拇指與\mathbf同向,食指與\mathbf同向,則中指會指向\mathbf的方向)。 勞侖茲力方程式的q\mathbf項目是電場力項目,q\mathbf \times \mathbf項目是磁場力項目。處於磁場內的載電導線感受到的磁場力就是這勞侖茲力的磁場力分量。 勞侖茲力方程式的积分形式为 其中,\mathbb是積分的體積,\rho是電荷密度,\mathbf是電流密度,\mathrm\tau是微小體元素。 勞侖茲力密度\mathbf是單位體積的勞侖茲力,表達為:.

新!!: 经典电磁理论的协变形式和洛伦兹力 · 查看更多 »

惯性参考系

在经典物理学与狭义相对论中,惯性参考系(常简称为惯性系)是指可以均匀且各向同性地描述空间,并且可以均匀描述时间的参考系。在惯性参考系内,系统内部的物理规律与系统外的因素无关。 所有的惯性系之间都在进行匀速平移运动。不同惯性系的测量结果可以通过简单的变换(伽利略变换或洛伦兹变换)相互转化。广义相对论中,在任意足够小以致时空曲率与潮汐力可以忽略的区域内,人们可以找到一组惯性系来近似描述这个区域。广义相对论中,非惯性系中的系统由于测地线运动原理不会受到外界影响。 物理定律在所有惯性系中形式一致。经典物理学与狭义相对论中,在非惯性系里,系统的物理规律会受到参考系相对于惯性系的加速度影响而发生变化。此时物体的受力要考虑惯性力。比如,落地的小球由于地球自转并不是完全沿直线落下。与地球一起运动的观察者必须考虑科里奥利力才能预测小球的水平运动情况。离心力是另一种与旋转参考系有关的惯性力。.

新!!: 经典电磁理论的协变形式和惯性参考系 · 查看更多 »

應力-能量張量

應力-能量張量,也稱應力-能量-動量張量、能量-應力張量、能量-動量張量、簡稱能動張量,在物理學中是一個張量,描述能量與動量在時空中的密度與通量(flux),其為牛頓物理中應力張量的推廣。在廣義相對論中,應力-能量張量為重力場的源,一如牛頓重力理論中質量是重力場源一般。應力-能量張量具有重要的應用,尤其是在愛因斯坦場方程式。.

新!!: 经典电磁理论的协变形式和應力-能量張量 · 查看更多 »

拉格朗日量

在分析力學裏,一个动力系统的拉格朗日量(Lagrangian),又稱為拉格朗日函數,是描述整个物理系统的动力状态的函数,對於一般經典物理系統,通常定義為動能減去勢能,以方程式表示為 其中,\mathcal為拉格朗日量,T為動能,V為勢能。 在分析力学裡,假設已知一个系统的拉格朗日量,则可以将拉格朗日量直接代入拉格朗日方程式,稍加运算,即可求得此系统的运动方程式。 拉格朗日量是因數學家和天文學家約瑟夫·拉格朗日而命名。.

新!!: 经典电磁理论的协变形式和拉格朗日量 · 查看更多 »

重定向到这里:

麦克斯韦方程组在狭义相对论中的形式

传出传入
嘿!我们在Facebook上吧! »