目录
26 关系: 动能,动量,动量中心系,势能,不变质量,廣義相對論,光速,勞侖茲協變性,勞侖茲因子,国际单位制,四维加速度,四维速度,磁矢势,粒子物理學,电子,电磁场,电磁四维势,狭义相对论,能量,薛定谔方程,闵可夫斯基时空,電荷,W及Z玻色子,洛伦兹力,洛伦兹变换,时空。
动能
动能是物质运动时所得到的能量。它通常被定义成使某物体从静止状态至运动状态所做的功。由于运动是相对的,动能也是相对于某参照系而言。同一物体在不同的参照系会有不同的速率,也就是有不同的动能。动能的国际单位是焦耳(J),以基本单位表示是千克米平方每秒平方(kg·m2·s-2)。一个物体的动能只有在速率改变时才会改变。.
查看 四维动量和动能
动量
在古典力学裏,动量(momentum)是物体的质量和速度的乘積。例如,一輛快速移動的重型卡車擁有很大的動量。若要使這重型卡車從零速度加速到移動速度,需要使到很大的作用力;若要使重型卡車從移動速度減速到零速度也需要使到很大的作用力。假若卡車能夠輕一點或移動速度能夠慢一點,則它的動量也會小一點。 动量在国际单位制中的单位为kg m s^。有關动量的更精确的量度的内容,请参见本页的动量的现代定义部分。 一般而言,一个物体的动量指的是这个物体在它运动方向上保持运动的趋势。动量实际上是牛顿第一定律的一个推论。 动量是个矢量。 动量是一个守恒量,这表示为在一个封闭系统内动量的总和不可改变。在经典力学中,动量守恒暗含在牛顿定律中,但在狭义相对论中依然成立,(广义)动量在电动力学、量子力学、量子场论、广义相对论中也成立。 勒内·笛卡儿认为宇宙中总的“运动的量”是保持守恒的,这里所说的“运动的量”被理解为“物体大小和速度的乘积”——但这不宜被解读为现代动量定律的表达方式,因为笛卡尔并没有把“质量”这个概念与物体“重量”和“大小”之间的关系区分开来,更重要的是他认为速率(标量)而不是速度(向量)是守恒的。因此对于笛卡尔来说:一个移动的物体从另一个表面弹回来的时候,该物体的方向发生了改变但速率没有发生改变,运动的量应该没有发生改变。.
查看 四维动量和动量
动量中心系
在物理学中,动量中心系(Center-of-momentum frame)是人为选取的这样一个参考系,在此参考系中,系统的总动量为零。动量中心系又叫做零动量系(zero-momentum frame)。 动量中心系的特例是质心参考系,即原点固定在体系质心的动量中心系。.
查看 四维动量和动量中心系
势能
势能(Potential Energy),亦稱--,是储存于一物理系统内的一种能量,是一个用来描述物体在保守力场中做功能力大小的物理量。保守力作功与路径无关,故可定义一个仅与位置有关的函数,使得保守力沿任意路径所做的功,可表达为这两点函数值的差,这个函数便是势能。 从物理意义上来说,势能表示了物体在特定位置上所储存的能量,描述了作功能力的大小。在适当的情况下,势能可以转化为诸如动能、内能等其他能量。.
查看 四维动量和势能
不变质量
不变质量(invariant mass)或称内秉质量(intrinsic mass)、固有质量(proper mass),亦常简称为质量,指的是一个物体或一个物体系统由总能量和动量构成的在所有参考系下都相同的一个洛仑兹不变量。当这个系统作为整体保持静止时,不变质量等于系统的总能量除以光速的平方,这也等于这个系统在一个与之相对静止的秤上称得的质量。如果系统由一个单一粒子组成,不变质量也称作这个粒子的静止质量。 由于一个孤立系统的质心总保持匀速直线运动,因此观察者总可以选择这样一个参考系,使系统在这一参考系中的总动量为零,即相对这个参考系为静止。这样的参考系称作质心系,这时系统的不变质量就等于系统的总能量除以光速的平方。这个於质心系下的总能量,可以被看作是系统在不同惯性系下可能被观测到所具有能量的“最小值”。 在多粒子系统的情形下,质心系中的粒子彼此之间可能会存在相对运动,并有可能存在一种或多种基本相互作用。这时粒子的动能和力场的势能会增大系统的总能量,使之大于所有粒子的静止质量之和,这部分能量也对系统的不变质量有贡献。.
查看 四维动量和不变质量
廣義相對論
广义相对论是現代物理中基于相对性原理利用几何语言描述的引力理论。该理论由阿尔伯特·爱因斯坦等人自1907年开始发展,最终在1915年基本完成。广义相对论将经典的牛顿万有引力定律與狭义相对论加以推廣。在广义相对论中,引力被描述为时空的一种几何属性(曲率),而时空的曲率则通过爱因斯坦场方程和处于其中的物质及辐射的能量與动量联系在一起。 从广义相对论得到的部分预言和经典物理中的对应预言非常不同,尤其是有关时间流易、空间几何、自由落体的运动以及光的传播等问题,例如引力场内的时间膨胀、光的引力红移和引力时间延迟效应。广义相对论的预言至今为止已经通过了所有观测和实验的验证——广义相对论虽然并非当今描述引力的唯一理论,但却是能够与实验数据相符合的最简洁的理论。不过仍然有一些问题至今未能解决。最为基础的即是广义相对论和量子物理的定律应如何统一以形成完备并且自洽的量子引力理论。 爱因斯坦的广义相对论理论在天体物理学中有着非常重要的应用。比如它预言了某些大质量恒星终结后,会形成时空极度扭曲以至于所有物质(包括光)都无法逸出的区域,黑洞。有证据表明恒星质量黑洞以及超大质量黑洞是某些天体例如活动星系核和微类星体发射高强度辐射的直接成因。光线在引力场中的偏折会形成引力透镜现象,这使得人们可能观察到处于遥远位置的同一个天体形成的多个像。广义相对论还预言了引力波的存在。引力波已经由激光干涉引力波天文台在2015年9月直接观测到。此外,广义相对论还是现代宇宙学中的的理论基础。.
查看 四维动量和廣義相對論
光速
光速,指光在真空中的速率,是一個物理常數,一般記作,精確值為(≈ m/s)。這一數值之所以是精確值,是因為米的定義就是基於光速和國際時間標準上的。根據狹義相對論,宇宙中所有物質和訊息的運動和傳播速度都不能超過。光速也是所有無質量粒子及對應的場波動(包括電磁輻射和引力波等)在真空中運行的速度。這一速度獨立於射源運動以及觀測者所身處的慣性參考系。在相對論中,起到把時間和空間聯繫起來的作用,並且出現在廣為人知的質能等價公式中:.
查看 四维动量和光速
勞侖茲協變性
物理學中,勞侖茲協變性(Lorentz covariance)是時空的一個關鍵性質,出自於狹義相對論,適用於全域性的場合。局域勞侖茲協變性(Local Lorentz covariance)所指為僅「局域」於各點附近無限小時空區域的勞侖茲協變性,此則出於廣義相對論。勞侖茲協變性有兩個不同、但緊密關聯的意義:.
查看 四维动量和勞侖茲協變性
勞侖茲因子
--因子是一个出現在狹義相對論中的速記因子,得名於荷兰物理学家亨德里克·洛伦兹,被用于计算時間膨脹、长度收缩、相对论质量等相對論效應。.
查看 四维动量和勞侖茲因子
国际单位制
國際單位制(Système International d'Unités,簡稱SI),-->源於公制(又稱米制),是世界上最普遍採用的標準度量系統。國際單位制以七個基本單位為基礎,由此建立起一系列相互換算關係明確的「一致單位」。另有二十個基於十進制的詞頭,當加在單位名稱或符號前的時候,可用於表達該單位的倍數或分數。 國際單位制源於法國大革命期間所採用的十進制單位系統──公制;現行制度從1948年開始建立,於1960年正式公佈。它的基礎是米-千克-秒制(MKS),而非任何形式的厘米-克-秒制(CGS)。國際單位制的設計意圖是,先定義詞頭和單位名稱,但單位本身的定義則會隨著度量科技的進步、精準度的提高,根據國際協議來演變。例如,分別於2011年、2014年舉辦的第24、25屆國際度量衡大會討論了有關重新定義公斤的提案。 隨著科學的發展,厘米-克-秒制中出現了不少新的單位,而各學科之間在單位使用的問題上也沒有良好的協調。因此在1875年,多個國際組織協定《米制公約》,創立了國際度量衡大會,目的是訂下新度量衡系統的定義,並在國際上建立一套書寫和表達計量的標準。 國際單位制已受大部分發達國家所採納,但在英語國家當中,國際單位制並沒有受到全面的使用。.
查看 四维动量和国际单位制
四维加速度
#重定向 四維加速度.
查看 四维动量和四维加速度
四维速度
四维速度(Four-velocity)是指物理学中,特别是狭义相对论和广义相对论中,一个物体的四维速度是取代经典意义上的速度(三维矢量)的四维矢量(四维时空中的矢量)。选取四维速度的原因是四维速度在洛伦兹变换下是协变的,而三维速度不是;换句话说,这么选取可以使光速在任意惯性系下保持不变。 相对论理论中一个事件是在四维时空内的坐标描述的,一个物体在时空中运动产生的轨迹曲线是通过固有时这个参数实现参数化的,而这条曲线称作世界线。四维速度是一维时间与三维空间坐标对固有时的改变率所构成的矢量,同时也是世界线的切向矢量。 作为比较,在经典力学中事件是通过它们在每一时刻上在三维空间中的坐标描述的,它们在三维空间中的轨迹是通过时间这个参数实现参数化的。经典速度是三维空间坐标对时间的改变率所构成的矢量,同时也是轨迹的切向矢量。 在狭义相对论的框架中,四维速度的大小(模)总是和光速的大小相等。.
查看 四维动量和四维速度
磁矢势
磁矢势,又稱磁位、磁勢(magnetic potential),通常標記為 \mathbf 。磁向量勢的旋度是磁場,以方程式表示 其中,\mathbf 是磁場。 直觀而言,磁向量勢似乎不及磁場來得「自然」、「基本」,而在一般電磁學教科書亦多以磁場來定義磁向量勢。以前,很多學者認為磁向量勢並沒有實際意義,只是人為的物理量,除了方便計算以外,別無其它用途。但是,詹姆斯·馬克士威頗不以為然,他認為磁向量勢可以詮釋為「每單位電荷儲存的能量」,就好像電勢被詮釋為「每單位電荷儲存的能量」。相關論述,稍後會有更詳盡解釋。 磁向量勢並不是唯一定義的;其數值是相對的,相對於某設定數值。因此,學者會疑問到底儲存了多少動量?不論如何,磁向量勢確實具有實際意義。尤其是在量子力學裏,於1959年,阿哈諾夫-波姆效應闡明,假設一個帶電粒子移動經過某零電場、零磁場、非零磁向量勢場區域,則此帶電粒子的波函數相位會有所改變,因而導致可觀測到的干涉現象 。現在,越來越多學者認為電勢和磁向量勢比電場和磁場更基本。不單如此,有學者認為,甚至在經典電磁學裏,磁向量勢也具有明確的意義和直接的測量值。 磁向量勢與電勢可以共同用來設定電場與磁場。許多電磁學的方程式可以以電場與磁場寫出,或者以磁向量勢與電勢寫出。較高深的理論,像量子力學理論,偏好使用的是磁向量勢與電勢,而不是電場與磁場。因為,在這些學術領域裏所使用的拉格朗日量或哈密頓量,都是以磁向量勢與電勢表達,而不是以電場與磁場表達。 開爾文男爵最先於1851年引入磁向量勢的概念,並且給定磁向量勢與磁場之間的關係。.
查看 四维动量和磁矢势
粒子物理學
粒子物理学是研究组成物质和射线的基本粒子以及它们之间相互作用的一個物理学分支。由于许多基本粒子在大自然的一般条件下不存在或不单独出现,物理学家只有使用粒子加速器在高能相撞的条件下才能生产和研究它们,因此粒子物理学也被称为高能物理学。.
查看 四维动量和粒子物理學
电子
电子(electron)是一种带有负电的次原子粒子,通常标记为 e^- \,\!。電子屬於轻子类,以重力、電磁力和弱核力與其它粒子相互作用。轻子是构成物质的基本粒子之一,无法被分解为更小的粒子。电子带有1/2自旋,是一种费米子。因此,根據泡利不相容原理,任何兩個電子都不能處於同樣的狀態。电子的反粒子是正电子(又称正子),其质量、自旋、帶电量大小都与电子相同,但是电量正負性与电子相反。電子與正子會因碰撞而互相湮滅,在這過程中,生成一對以上的光子。 由电子與中子、质子所组成的原子,是物质的基本单位。相对于中子和质子所組成的原子核,电子的质量显得极小。质子的质量大约是电子质量的1836倍。当原子的电子数与质子数不等时,原子会带电;称該帶電原子为离子。当原子得到额外的电子时,它带有负电,叫阴离子,失去电子时,它带有正电,叫阳离子。若物体带有的电子多于或少于原子核的电量,导致正负电量不平衡时,称该物体带静电。当正负电量平衡时,称物体的电性为电中性。靜電在日常生活中有很多用途,例如,靜電油漆系統能夠將或聚氨酯漆,均勻地噴灑於物品表面。 電子與質子之間的吸引性庫侖力,使得電子被束縛於原子,稱此電子為束縛電子。兩個以上的原子,會交換或分享它們的束縛電子,這是化學鍵的主要成因。当电子脱离原子核的束缚,能够自由移动时,則改稱此電子为自由电子。许多自由电子一起移动所产生的净流动现象称为电流。在許多物理現象裏,像電傳導、磁性或熱傳導,電子都扮演了機要的角色。移動的電子會產生磁場,也會被外磁場偏轉。呈加速度運動的電子會發射電磁輻射。 根據大爆炸理論,宇宙現存的電子大部份都是生成於大爆炸事件。但也有一小部份是因為放射性物質的β衰變或高能量碰撞而生成的。例如,當宇宙線進入大氣層時遇到的碰撞。在另一方面,許多電子會因為與正子相碰撞而互相湮滅,或者,會在恆星內部製造新原子核的恆星核合成過程中被吸收。 在實驗室裏,精密的尖端儀器,像四極離子阱,可以長時間局限電子,以供觀察和測量。大型托卡馬克設施,像国际热核聚变实验反应堆,藉著局限電子和離子電漿,來實現受控核融合。無線電望遠鏡可以用來偵測外太空的電子電漿。 電子被广泛應用于電子束焊接、陰極射線管、電子顯微鏡、放射線治療、激光和粒子加速器等领域。.
查看 四维动量和电子
电磁场
電磁場(electromagnetic field)是由帶電粒子的運動而產生的一種物理場。處於電磁場的帶電粒子會受到電磁場的作用力。電磁場與帶電粒子(電荷或電流)之間的交互作用可以用馬克士威方程組和勞侖茲力定律來描述。 電磁場可以被視為電場和磁場的連結。追根究底,電場是由電荷產生的,磁場是由移動的電荷(電流)產生的。對於耦合的電場和磁場,根據法拉第電磁感應定律,電場會隨著含時磁場而改變;又根據馬克士威-安培方程式,磁場會隨著含時電場而改變。這樣,形成了傳播於空間的電磁波,又稱光波。無線電波或紅外線是較低頻率的電磁波;紫外光或X-射線是較高頻率的電磁波。 電磁場涉及的基本交互作用是電磁交互作用。這是大自然的四個基本作用之一。其它三個是重力相互作用,弱交互作用和強交互作用。電磁場倚靠電磁波傳播於空間。 從經典角度,電磁場可以被視為一種連續平滑的場,以類波動的方式傳播。從量子力學角度,電磁場是量子化的,是由許多個單獨粒子構成的。.
查看 四维动量和电磁场
电磁四维势
电磁四维势(英文:Electromagnetic four-potential)是电磁理论中的一个协变四维矢量,它在国际单位制中的单位是伏特·秒/米(在厘米-克-秒制中的单位是馬克士威/厘米),它的定义为(括号中表示在厘米-克-秒制中的形式,下同) 其中\phi\,是电势,\vec A\,是磁矢势。 在本篇文章裏,閔可夫斯基度規的形式被規定為 diag(1, -1, -1, -1) ,這是参考了約翰·傑克森(John D.
查看 四维动量和电磁四维势
狭义相对论
-- 狭义相对论(英文:Special relativity)是由爱因斯坦、洛仑兹和庞加莱等人创立的,應用在惯性参考系下的时空理论,是对牛顿时空观的拓展和修正。爱因斯坦在1905年完成的《論動體的電動力學》論文中提出了狭义相对论Albert Einstein (1905) "", Annalen der Physik 17: 891; 英文翻譯為George Barker Jeffery和 Wilfrid Perrett翻譯的(1923); 另一版英文翻譯為Megh Nad Saha翻譯的On the Electrodynamics of Moving Bodies(1920).
查看 四维动量和狭义相对论
能量
在物理學中,能量(古希臘語中 ἐνέργεια energeia 意指「活動、操作」)是一個間接觀察到的物理量。它往往被視為某一個物理系統對其他的物理系統做功的能力。由於功被定義為力作用一段距離,因此能量總是等同於沿著一定的長度阻擋某作用力的能力。 一個物體所含的總能量奠基於其質量,能量如同質量一般,不會無中生有或無故消失。能量就像質量一樣,是一個純量。在國際單位制(SI)中,能量的單位是焦耳,但是在有些領域中會習慣使用其他單位如千瓦·時和千卡,這些也是功的單位。 A系統可以藉由簡單的物質轉移將能量傳輸到B系統(因為物質的質量等效於能量)。然而,如果能量不是藉由物質轉移而傳輸能量,而是由其他方法轉移能量,將會使B系統產生變化,因為A系統對B系統作了功。這功表現的效果如同於一個力沿一定的距離作用在接收能量的系統裡。舉例來說,A系統可以藉由轉移(輻射)電磁能量到B系統,而這會在吸收輻射能量的粒子上產生力。同樣的,一個系統可能藉由碰撞轉移能量,而這種情況下被碰撞的物體會在一段距離內受力並獲得運動的能量,稱為動能。熱可以藉由輻射能轉移,或者直接藉由系統間粒子的碰撞而以微觀粒子之動能的形式傳遞。 能量可以不表現為物質、動能或是電磁能的方式儲存在一個系統中。當粒子在與其有交互作用的力場中受外力移動一段距離,此粒子移動到這個場的新位置所需的能量便如此的被儲存了。當然粒子必須藉由外力才能保持在新位置上,否則其所處在的場會藉由釋放儲存能量的方式,讓粒子回到原來的狀態。這種藉由粒子在力場中改變位置而儲存的能量就稱為位能。一個簡單的例子就是在重力場中往上提升一個物體到某一高度所需要做的功就是位能。 任何形式的能量可以轉換成另一種形式。舉例來說,當物體在力場中,因力場作用而移動時,位能可以轉化成動能。當能量是屬於非熱能的形式時,它轉化成其他種類能量的效率可以很高甚至達百分之百,如沿光滑斜面下滑的物體,或者新物質粒子的產生。然而如果以熱能的形式存在,則在轉換成另一種型態時,就如同熱力學第二定律所描述的,總會有轉換效率的限制。 在所有能量轉換的過程中,總能量保持不變,原因在於總系統的能量是在各系統間做轉移,當某個系統損失能量,必定會有另一個系統得到這損失的能量,導致失去和獲得達成平衡,所以總能量不改變。這個能量守恆定律,是十九世紀初時提出,並應用於任何一個孤立系統。(其後雖有質能轉換方程式的發現,但根據該方程式,亦可以把質量視為能量的另一存在形式,所以此定律可說依舊成立)根據諾特定理,能量守恆是由於物理定律不會隨時間改變而得到的自然結果。 雖然一個系統的總能量,不會隨著時間改變,但其能量的值,可能會因為參考系而有所不同。例如一個坐在飛機裡的乘客,相對於飛機其動能為零;但是相對於地球來說,動能卻不為零。.
查看 四维动量和能量
薛定谔方程
在量子力學中,薛定諤方程(Schrödinger equation)是描述物理系統的量子態怎樣隨時間演化的偏微分方程,为量子力學的基礎方程之一,其以發表者奧地利物理學家埃尔温·薛定諤而命名。關於量子態與薛定諤方程的概念涵蓋於基礎量子力學假說裏,無法從其它任何原理推導而出。 在古典力學裏,人们使用牛頓第二定律描述物體運動。而在量子力學裏,類似的運動方程為薛定諤方程。薛定諤方程的解完備地描述物理系統裏,微觀尺寸粒子的量子行為;這包括分子系統、原子系統、亞原子系統;另外,薛定諤方程的解還可完備地描述宏觀系統,可能乃至整個宇宙。 薛定諤方程可以分為「含時薛定諤方程」與「不含時薛定諤方程」兩種。含時薛定諤方程與時間有關,描述量子系統的波函數怎樣隨著時間而演化。不含時薛定諤方程则與時間無關,描述了定態量子系統的物理性質;該方程的解就是定態量子系統的波函數。量子事件發生的機率可以用波函數來計算,其機率幅的絕對值平方就是量子事件發生的機率密度。 薛定諤方程所屬的波動力學可以數學變換為維爾納·海森堡的矩陣力學,或理察·費曼的路徑積分表述。薛定諤方程是個非相對論性方程,不適用於相對論性理論;對於相對論性微觀系統,必須改使用狄拉克方程或克莱因-戈尔登方程等。.
查看 四维动量和薛定谔方程
闵可夫斯基时空
#重定向 閔考斯基時空.
查看 四维动量和闵可夫斯基时空
電荷
在電磁學裡,電荷(electric charge)是物質的一種物理性質。稱帶有電荷的物質為「帶電物質」。兩個帶電物質之間會互相施加作用力於對方,也會感受到對方施加的作用力,所涉及的作用力遵守庫侖定律。电荷分为两种,「正电荷」与「负电荷」。带有正电荷的物质称为「带正电」;带有负电荷的物质称为「带负电」。假若两个物质都带有正电或都带有负电,则称这两个物质「同电性」,否则称这两个物质「异电性」。两个同电性物质会相互感受到对方施加的排斥力;两个异电性物质会相互感受到对方施加的吸引力。 电荷是许多次原子粒子所拥有的一种基本守恒性质。称带有电荷的粒子为「带电粒子」。电荷决定了带电粒子在电磁方面的物理行为。静止的带电粒子会产生电场,移动中的带电粒子会产生电磁场,带电粒子也会被电磁场所影响。一个带电粒子与电磁场之间的相互作用称为电磁力或电磁交互作用。这是四种基本交互作用中的一种。.
查看 四维动量和電荷
W及Z玻色子
在物理學中,W及Z玻色子(boson)是負責傳遞弱核力的基本粒子。它們是1983年在歐洲核子研究組織發現的,被認為是粒子物理標準模型的一大勝利。 W玻色子是因弱核力的“弱”(Weak)字而命名的。而Z玻色子則半幽默地因是“最後一個要發現的粒子”而名。另一個說法是因Z玻色子有零(Zero)電荷而得名。.
查看 四维动量和W及Z玻色子
洛伦兹力
在電動力學裏,勞侖茲力(Lorentz force)是運動於電磁場的帶電粒子所感受到的作用力。勞侖茲力是因荷蘭物理學者亨德里克·勞侖茲而命名。根據勞侖茲力定律,勞侖茲力可以用方程式,稱為勞侖茲力方程式,表達為 其中,\mathbf是勞侖茲力,q是帶電粒子的電荷量,\mathbf是電場强度,\mathbf是帶電粒子的速度,\mathbf是磁感应强度。 勞侖茲力定律是一個基本公理,不是從別的理論推導出來的定律,而是由多次重複完成的實驗所得到的同樣的結果。 感受到電場的作用,正電荷會朝著電場的方向加速;但是感受到磁場的作用,按照右手定則,正電荷會朝著垂直於速度\mathbf和磁場\mathbf的方向彎曲(詳細地說,假設右手的大拇指與\mathbf同向,食指與\mathbf同向,則中指會指向\mathbf的方向)。 勞侖茲力方程式的q\mathbf項目是電場力項目,q\mathbf \times \mathbf項目是磁場力項目。處於磁場內的載電導線感受到的磁場力就是這勞侖茲力的磁場力分量。 勞侖茲力方程式的积分形式为 其中,\mathbb是積分的體積,\rho是電荷密度,\mathbf是電流密度,\mathrm\tau是微小體元素。 勞侖茲力密度\mathbf是單位體積的勞侖茲力,表達為:.
查看 四维动量和洛伦兹力
洛伦兹变换
洛伦兹变换是观测者在不同惯性参照系之间对物理量进行测量时所进行的转换关系,在数学上表现为一套方程組。洛伦兹变换因其创立者——荷兰物理学家亨德里克·洛伦兹而得名。洛伦兹变换最初用来调和19世纪建立起来的经典电动力学同牛顿力学之间的矛盾,后来成为狭义相对论中的基本方程组。.
查看 四维动量和洛伦兹变换
时空
时空(时间-空间,时间和空间)是一种基本概念,分别属于物理学、天文学、空间物理学和哲学。并且也是这几个学科最重要的最基本的概念之一。 空间在力学和物理学上,是描述物体以及其运动的位置、形状和方向等抽象概念;而时间则是描述运动之持续性,事件发生之顺序等。时空的特性,主要就是通过物体,其运动以及与其他物体的相互作用之间的各种关系之汇总。空间和时.
查看 四维动量和时空
亦称为 动量-能量四维矢量。