目录
加法
加法是基本的算术運算。加法即是將二個以上的數,合成一個數,其結果称為和。加法與減、乘、除合稱「四則運算」。 表達加法的符號為加號(+)。進行加法時以加號將各項連接起來。把和放在等號(.
查看 傅利曼數和加法
冪
幂運算(Exponentiation),又稱指數運算,是一種數學運算,表示為 bn。其中,b 被稱為底數,而 n 被稱為指數,其結果為 b 自乘 n 次。同樣地,把 b^n 看作乘方的结果,稱為「 b 的 n 次幂」或「 b 的 n 次方」。 通常指數寫成上標,放在底數的右邊。當不能用上標時,例如在編程語言或電子郵件中,b^n通常寫成b^n或b**n,也可視為超運算,記為bn,亦可以用高德納箭號表示法,寫成b↑n,讀作“ b 的 n 次方”。 當指數為 1 時,通常不寫出來,因為運算出的值和底數的數值一樣;指數為 2 時,可以讀作“ b 的平方”;指數為 3 時,可以讀作“ b 的立方”。 bn 的意義亦可視為: 起始值 1(乘法的單位元)乘上底數(b)自乘指數(n)這麼多次。這樣定義了後,很易想到如何一般化指數 0 和負數的情況:除 0 外所有數的零次方都是 1 ;指數是負數時就等於重複除以底數(或底數的倒數自乘指數這麼多次),即: 以分數為指數的冪定義為b^.
查看 傅利曼數和冪
純位數
在娛樂數學裡,純位數為一由相同位元重複而組成的自然數,通常指在十進位裡。亦可指其他的進位,如156在五進位內即為純位數(1111)。 例如11、222、4444、77777及999999。所有的純位數都是迴文數,以及循環單位的倍數。 在B進位之下,數字為x(0)的y位純位數,其數值為x\frac。 舉例來說,十進位底下 77777 的數值為7\frac,十六進位底下 77777 則為 7\frac.
查看 傅利曼數和純位數
罗马数字
罗马数字是古罗马使用的记数系统,现今仍很常见。.
查看 傅利曼數和罗马数字
进位制
进位制是一种记数方式,亦称进位计数法或位值计数法。利用这种记数法,可以使用有限种数字符号来表示所有的数值。一种进位制中可以使用的数字符号的数目称为这种进位制的基数或底数。若一个进位制的基数为n,即可称之为n进位制,简称n进制。现在最常用的进位制是十进制,这种进位制通常使用10个阿拉伯数字(即0-9)进行记数。 我们可以用不同的进位制来表示同一个数。比如:十进数,可以用二进制表示为,也可以用五进制表示为,同时也可以用八进制表示为,可用十二進制表示為,亦可用十六进制表示为,它们所代表的数值都是一样的。 在10进制中有10个数字(0 - 9),比如 在16进制中有16个数字(0–9 和 A–F),比如 一般说来,b进制有b个数字,如果 a_3, a_2, a_1, a_0 是其中四个数字,那么就有.
查看 傅利曼數和进位制
減法
減法是尋找兩個數的差的算术運算,可視為「加法的逆運算」。減法是符號是減號(-)。加、減、乘、除合稱四則運算。 在數式5 - 3.
查看 傅利曼數和減法
数
數是一個用作計數、標記或用作量度的抽象概念,是比同质或同属性事物的等级的简单符号记录形式(或称度量)。代表數的一系列符號,包括數字、運算符號等統稱為記數系統。在日常生活中,數通常出現在在標記(如公路、電話和門牌號碼)、序列的指標(序列號)和代碼(ISBN)上。在數學裡,數的定義延伸至包含如如分數、負數、無理數、超越數及複數等抽象化的概念。 起初人們只覺得某部分的數是數,後來隨著需要,逐步將數的概念擴大;例如畢達哥拉斯認為,數必須能用整數和整數的比表達的,後來發現无理数無法這樣表達,引起第一次數學危機,但人們漸漸接受無理數的存在,令數的概念得到擴展。 數的算術運算(如加減乘除)在抽象代數這一數學分支內被廣義化成抽象數字系統,如群、環和體等。.
查看 傅利曼數和数
括号
括号( 【 】 〔 〕 ,Bracket,又称括弧号 ),為加在需注释的文字的左右(上下)兩旁的雙對符号,其有下列多種種類:.
查看 傅利曼數和括号
121
121是120与122之间的自然数。.
查看 傅利曼數和121
125
125是124與126之間的自然數。.
查看 傅利曼數和125
126
126是125與127之間的自然數。.
查看 傅利曼數和126
127
127是126与128之间的自然数。.
查看 傅利曼數和127
128
128是127与129之间的自然数。.
查看 傅利曼數和128
153
153是152與154之間的自然数。.
查看 傅利曼數和153
216
216是於215和217的一個自然數。 也是一盒巴基球的数量.
查看 傅利曼數和216
25
25是24与26之间的自然数。.
查看 傅利曼數和25
289
289是288與290之間的自然數。.
查看 傅利曼數和289