我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

电子衍射

指数 电子衍射

电子繞射,是指电子在通过某些障碍物时发生衍射的现象。因为波粒二象性的存在,电子也可被当做是波,从而也能产生衍射现象。电子的波长满足德布罗意波长公式: h表示普朗克常数,p表示动量。由于电子的动量较光子大得多,因而其波长也短得多。所以想使电子发生衍射时就需要更微小的障碍物,实验上一般是采用晶体。另外,正是由于电子比光子更难发生衍射,电子显微镜的分辨率比光学显微镜的更高。 当电子波穿过晶体的时候,被晶体中的原子散射,散射的电子波互相之间干涉所产生的现象就是电子衍射。晶体中每个原子均会对电子进行散射,使得波长和方向发生变化。并且部分电子会与晶体中的原子发生能量交换作用,若电子波长发生变化,则称为非弹性散射;若没有波长变化,则称为弹性散射。 电子衍射的图像一般是该图像呈现规则的斑点,衍射图像是由同心圆组成的。多晶的是一系列规则的同心圆,而非晶的是由分散的同心圆组成的。 电子衍射是最经常用于固体物理和化学研究固体的晶体结构。实验通常是在透射电子显微镜(TEM)或扫描电子显微镜(SEM),为进行。电子衍射用来做物相鉴定、测定原子位置等。与X射线相比,电子更容易被物体吸收,所以更加精确,适合于研究微薄膜、小晶体。.

目录

  1. 16 关系: 动量低能电子衍射光子光学显微镜克林顿·戴维孙电子电子显微镜物質波衍射贝尔实验室路易·德布罗意雷斯特·革末透射电子显微镜波粒二象性扫描电子显微镜普朗克常数

  2. 应用物理
  3. 散射
  4. 晶体学
  5. 电子显微术
  6. 繞射
  7. 電子

动量

在古典力学裏,动量(momentum)是物体的质量和速度的乘積。例如,一輛快速移動的重型卡車擁有很大的動量。若要使這重型卡車從零速度加速到移動速度,需要使到很大的作用力;若要使重型卡車從移動速度減速到零速度也需要使到很大的作用力。假若卡車能夠輕一點或移動速度能夠慢一點,則它的動量也會小一點。 动量在国际单位制中的单位为kg m s^。有關动量的更精确的量度的内容,请参见本页的动量的现代定义部分。 一般而言,一个物体的动量指的是这个物体在它运动方向上保持运动的趋势。动量实际上是牛顿第一定律的一个推论。 动量是个矢量。 动量是一个守恒量,这表示为在一个封闭系统内动量的总和不可改变。在经典力学中,动量守恒暗含在牛顿定律中,但在狭义相对论中依然成立,(广义)动量在电动力学、量子力学、量子场论、广义相对论中也成立。 勒内·笛卡儿认为宇宙中总的“运动的量”是保持守恒的,这里所说的“运动的量”被理解为“物体大小和速度的乘积”——但这不宜被解读为现代动量定律的表达方式,因为笛卡尔并没有把“质量”这个概念与物体“重量”和“大小”之间的关系区分开来,更重要的是他认为速率(标量)而不是速度(向量)是守恒的。因此对于笛卡尔来说:一个移动的物体从另一个表面弹回来的时候,该物体的方向发生了改变但速率没有发生改变,运动的量应该没有发生改变。.

查看 电子衍射和动量

低能电子衍射

低能电子衍射(Low-energy electron diffraction,LEED)是一种用以测定单晶表面结构的实验手段,使用的低能电子束(20–200 eV)轰击样品表面,可在荧光屏上观测到被衍射的电子所形成的光斑,进而表征样品的表面结构。 低能电子衍射有以下两种应用方式:.

查看 电子衍射和低能电子衍射

光子

| mean_lifetime.

查看 电子衍射和光子

光学显微镜

光学显微镜是一种利用光学透镜产生影像放大效应的显微镜。 由物体入射的光被至少两个光学系统(物镜和目镜)放大。首先物镜产生一个被放大实像,人眼通过作用相当于放大镜的目镜观察这个已经被放大了的实像。一般的光学显微镜有多个可以替换的物镜,这样观察者可以按需要更换放大倍数。这些物镜一般被安置在一个可以转动的物鏡盤上,转动物镜盘就可以使不同的物镜方便地进入光路,物鏡盤的英文是Nosepiece,又譯作鼻輪。 十八世纪,光学显微镜的放大倍率已经提高到了1000倍,使人们能用眼睛看清微生物体的形态、大小和一些内部结构。直到物理学家发现了放大倍率与分辨率之间的规律,人们才知道光学显微镜的分辨率是有极限的,分辨率的这一极限限制了放大倍率的无限提高,1600倍成了光学显微镜放大倍率的最高极限,使得形态学的应用在许多领域受到了很大限制。 光学显微镜的分辨率受到光波长的限制,一般不超过0.3微米。假如显微镜使用紫外线作为光源或物体被放在油中的话,分辨率还可以得到提高。 光学显微镜依樣品的不同可分為反射式和透射式。反射显微镜的物体一般是不透明的,光从上面照在物体上,被物体反射的光进入显微镜。这种显微镜经常被用来观察固体等,多應用在工學、材料領域,在正立顯微鏡中,此類顯微鏡又稱作金相顯微鏡。透射显微镜的物体是透明的或非常薄,光从可透过它进入显微镜。这种显微镜常被用来观察生物组织。 光學顯微鏡依其聚光鏡(condenser)和物鏡(Objective)的設計,可用來觀察不同的樣品。明視野(Brightfield)用來觀察薄的染色生物組織樣品,暗視野(Darkfield)功能的視野下,背景為黑色,能突顯樣品的細微面貌,觀察未染色樣品時,如活細胞,可利用相位差(Phase)功能。另外還有微分干涉差(differential interference contrast,DIC)功能,都常搭配在光學顯微鏡上。 依光源的不同,還有螢光顯微鏡、共聚焦顯微鏡等類別。 2014年10月8日,诺贝尔化学奖颁给了艾力克·贝齐格 (Eric Betzig),W·E·莫尔纳尔 (William Moerner)和斯特凡·W·赫尔 (Stefan Hell),奖励其发展超分辨荧光显微镜 (Super-Resolved Fluorescence Microscopy),这将带来光学显微镜进入纳米级尺度中。.

查看 电子衍射和光学显微镜

克林顿·戴维孙

柯林頓·戴維森(Clinton Davisson,),美国物理学家,曾在贝尔实验室長期工作。他與雷斯特·革末,在戴維森-革末實驗裏,共同合作發現電子繞射現象。因此,戴維森和喬治·湯姆森於 1937 年一起榮获诺贝尔物理学奖。湯姆森也在同時獨立地發現電子繞射現象。.

查看 电子衍射和克林顿·戴维孙

电子

电子(electron)是一种带有负电的次原子粒子,通常标记为 e^- \,\!。電子屬於轻子类,以重力、電磁力和弱核力與其它粒子相互作用。轻子是构成物质的基本粒子之一,无法被分解为更小的粒子。电子带有1/2自旋,是一种费米子。因此,根據泡利不相容原理,任何兩個電子都不能處於同樣的狀態。电子的反粒子是正电子(又称正子),其质量、自旋、帶电量大小都与电子相同,但是电量正負性与电子相反。電子與正子會因碰撞而互相湮滅,在這過程中,生成一對以上的光子。 由电子與中子、质子所组成的原子,是物质的基本单位。相对于中子和质子所組成的原子核,电子的质量显得极小。质子的质量大约是电子质量的1836倍。当原子的电子数与质子数不等时,原子会带电;称該帶電原子为离子。当原子得到额外的电子时,它带有负电,叫阴离子,失去电子时,它带有正电,叫阳离子。若物体带有的电子多于或少于原子核的电量,导致正负电量不平衡时,称该物体带静电。当正负电量平衡时,称物体的电性为电中性。靜電在日常生活中有很多用途,例如,靜電油漆系統能夠將或聚氨酯漆,均勻地噴灑於物品表面。 電子與質子之間的吸引性庫侖力,使得電子被束縛於原子,稱此電子為束縛電子。兩個以上的原子,會交換或分享它們的束縛電子,這是化學鍵的主要成因。当电子脱离原子核的束缚,能够自由移动时,則改稱此電子为自由电子。许多自由电子一起移动所产生的净流动现象称为电流。在許多物理現象裏,像電傳導、磁性或熱傳導,電子都扮演了機要的角色。移動的電子會產生磁場,也會被外磁場偏轉。呈加速度運動的電子會發射電磁輻射。 根據大爆炸理論,宇宙現存的電子大部份都是生成於大爆炸事件。但也有一小部份是因為放射性物質的β衰變或高能量碰撞而生成的。例如,當宇宙線進入大氣層時遇到的碰撞。在另一方面,許多電子會因為與正子相碰撞而互相湮滅,或者,會在恆星內部製造新原子核的恆星核合成過程中被吸收。 在實驗室裏,精密的尖端儀器,像四極離子阱,可以長時間局限電子,以供觀察和測量。大型托卡馬克設施,像国际热核聚变实验反应堆,藉著局限電子和離子電漿,來實現受控核融合。無線電望遠鏡可以用來偵測外太空的電子電漿。 電子被广泛應用于電子束焊接、陰極射線管、電子顯微鏡、放射線治療、激光和粒子加速器等领域。.

查看 电子衍射和电子

电子显微镜

電子顯微鏡(electron microscope,簡稱電鏡或電顯)是使用電子來展示物件的內部或表面的顯微鏡。 高速的電子的波長比可見光的波長短(波粒二象性),而顯微鏡的分辨率受其使用的波長的限制,因此電子顯微鏡的分辨率(約0.2奈米)遠高於光學顯微鏡的分辨率(約200奈米)。.

查看 电子衍射和电子显微镜

物質波

物理学中,物質波(即德布羅意波)係指所有物質的波(见波粒二象性)。 德布羅意說明了波長和動量成反比;頻率和總能成正比之關係,是路易·德布羅意於1923年在他的博士論文提出的。 第一德布羅意方程指出,粒子波長λ(亦稱「德布羅意波長」)和動量p的關係:(下式中普朗克常數h、粒子靜質量m、粒子速度v、勞侖茲因子γ和真空光速c) 第二德布羅意方程指出頻率ν和總能E的關係: 這兩個式子通常寫作.

查看 电子衍射和物質波

衍射

--(diffraction),又稱--,是指波遇到障碍物时偏离原来直线传播的物理现象。 在古典物理学中,波在穿过狭缝、小孔或圆盘之类的障碍物后會发生不同程度的弯散传播。假設將一个障碍物置放在光源和观察屏之间,則會有光亮区域與陰暗区域出現於观察屏,而且這些区域的边界並不銳利,是一种明暗相间的复杂图样。這现象称为衍射,當波在其传播路径上遇到障碍物时,都有可能發生这种现象。除此之外,当光波穿过折射率不均匀的介质时,或当声波穿过声阻抗不均匀的介质时,也会发生类似的效应。在一定条件下,不仅水波、光波能够产生肉眼可见的衍射现象,其他类型的电磁波(例如X射线和无线电波等)也能够发生衍射。由於原子尺度的實際物體具有類似波的性質,它們也會表现出衍射现象,可以通过量子力学进行研究其性质。 在適當情况下,任何波都具有衍射的固有性质。然而,不同情况中波发生衍射的程度有所不同。如果障碍物具有多个密集分布的孔隙,就会造成较为复杂的衍射强度分布图样。这是因為波的不同部分以不同的路径传播到观察者的位置,发生波叠加而形成的現象。 衍射的形式論还可以用來描述有限波(量度為有限尺寸的波)在自由空间的传播情况。例如,激光束的發散性質、雷达天线的波束形状以及超声波传感器的视野范围都可以利用衍射方程来加以分析。.

查看 电子衍射和衍射

贝尔实验室

贝尔实验室(Bell Laboratories),最初是内从事包括电话交换机、电话电缆、半导体等电信相关技术的研究开发机构。地点位于美國新澤西州聯合縣的Murray Hill。.

查看 电子衍射和贝尔实验室

路易·德布罗意

路易·维克多·德布罗意,第七代布罗意公爵(Louis Victor de Broglie, prince, puis duc de Broglie,),简称路易·德布罗意(Louis de Broglie),法國物理學家,法國外交和政治世家布羅意公爵家族的後代。从1928年到1962年在索邦大學擔任理論物理學教授,1929年因發現了電子的波動性,以及他對量子理論的研究而獲諾貝爾物理學獎。1952年獲聯合國教科文組織頒發的。 於1944年,德布羅意膺選為法蘭西學術院第一席位的院士,是第十六位得到此殊榮的人士。他也是法國科學院的永久秘書。.

查看 电子衍射和路易·德布罗意

雷斯特·革末

雷斯特·革末(Lester Germer ,),是一位美國物理學家。他與柯林頓·戴維森,在戴維森-革末實驗裏,共同合作證明了物質的波粒二象性。這實驗更證實了量子力學的正確性,使得那時剛創立的量子力學,獲得了物理學家的廣泛接受。後來,因為這重大的貢獻,戴維森和喬治·湯姆森一起榮獲 1937 年諾貝爾物理學獎。戴維森-革末實驗也為電子顯微鏡的發展奠定了基礎。革末在熱離子學 (thermionics) 、金屬沖蝕 (metal erosion) 、接觸力學等等學術領域,都有很大的貢獻。 在第一次世界大戰時期,革末曾經是一位戰鬥機駕駛員。戰後,他任職於紐澤西州的貝爾實驗室。 1945年, 49 歲革末開始了攀岩的副業生涯。在美國東北部很多地方,都有他的足跡。他特別喜歡在紐約州的 Shawangunk Ridge 攀岩。那時候,阿帕拉契登山俱樂部是那裏主要管理攀岩運動的組織。革末從來沒有參加阿帕拉契登山俱樂部的活動。不僅這樣,他還與俱樂部的安全委員會主席 Hans Claus 發生劇烈的衝突。有一陣子,革末的攀登證照居然被撤銷,理由是「過度友善,過度熱心」。大家都知道,革末樂意善捐,廣交朋友,綽號為「一人攀岩班」。 於 1971 年,在他的 75 歲生日的前一星期,當他又在先鋒攀登 Shawangunk Ridge (眉毛點,5.6 等級)的時候,不幸因心肌梗死而往生。直到那時刻,革末擁有二十六年完美的安全紀錄;他從來沒有過一次先鋒跌落 (leader fall) 的紀錄。.

查看 电子衍射和雷斯特·革末

透射电子显微镜

透射电子显微镜(Transmission electron microscope,縮寫:TEM、CTEM),简称--电镜,是把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。散射角的大小与样品的密度、厚度相关,因此可以形成明暗不同的影像,影像将在放大、聚焦后在成像器件(如荧光屏、胶片、以及感光耦合组件)上显示出来。 由于电子的德布罗意波长非常短,--电子显微镜的分辨率比光学显微镜高的很多,可以达到0.1~0.2nm,放大倍数为几万~百万倍。因此,使用透射电子显微镜可以用于观察样品的精细结构,甚至可以用于观察仅仅一列原子的结构,比光学显微镜所能够观察到的最小的结构小数万倍。TEM在中和物理学和生物学相关的许多科学领域都是重要的分析方法,如癌症研究、病毒学、材料科学、以及纳米技术、半导体研究等等。 在放大倍数较低的时候,TEM成像的对比度主要是由于材料不同的厚度和成分造成对电子的吸收不同而造成的。而当放大率倍数较高的时候,复杂的波动作用会造成成像的亮度的不同,因此需要专业知识来对所得到的像进行分析。通过使用TEM不同的模式,可以通过物质的化学特性、晶体方向、电子结构、样品造成的电子相移以及通常的对电子吸收对样品成像。 第一台TEM由马克斯·克诺尔和恩斯特·鲁斯卡在1931年研制,这个研究组于1933年研制了第一台分辨率超过可见光的TEM,而第一台商用TEM于1939年研制成功。.

查看 电子衍射和透射电子显微镜

波粒二象性

波粒二象性示意圖說明,從不同角度觀察同樣一件物體,可以看到兩種迥然不同的圖樣。 在量子力學裏,微观粒子有时會显示出波动性(这时粒子性較不显著),有时又會显示出粒子性(这时波动性較不显著),在不同条件下分别表现出波动或粒子的性质。這種稱為波粒二象性(wave-particle duality)的量子行為是微观粒子的基本属性之一。 波粒二象性指的是微觀粒子顯示出的波動性與粒子性。波動所具有的波長與頻率意味著它在空間方面與時間方面都具有延伸性。而粒子總是可以被觀測到其在某時間與某空間的明確位置與動量。採用哥本哈根詮釋,更廣義的互補原理可以用來解釋波粒二象性。互補原理闡明,量子現象可以用一種方法或另外一種共軛方法來觀察,但不能同時用兩種相互共軛的方法來觀察。.

查看 电子衍射和波粒二象性

扫描电子显微镜

扫描电子显微镜(Scanning Electron Microscope,缩写为SEM),简称扫描电镜,是一种电子显微镜,其通过用聚焦电子束扫描样品的表面来产生样品表面的图像。 电子与样品中的原子相互作用,产生包含关于样品的表面测绘学形貌和组成的信息的各种信号。电子束通常以图案扫描,并且光束的位置与检测到的信号组合以产生图像。扫描电子显微镜可以实现分辨率优于1纳米。样品可以在高真空,低真空,湿条件(用环境扫描电子显微镜)以及宽范围的低温或高温下观察到。 最常见的扫描电子显微镜模式是检测由电子束激发的原子发射的二次电子(secondary electron)。可以检测的二次电子的数量,取决于样品测绘学形貌,以及取决于其他因素。通过扫描样品并使用特殊检测器收集被发射的二次电子,创建了显示表面的形貌的图像。它还可能产生样品表面的高分辨率图像,且图像呈三维,鉴定样品的表面结构。.

查看 电子衍射和扫描电子显微镜

普朗克常数

普朗克常數記為h,是一個物理常數,用以描述量子大小。在量子力學中佔有重要的角色,馬克斯·普朗克在1900年研究物体热辐射的规律时发现,只有假定电磁波的发射和吸收不是连续的,而是一份一份地进行的,计算的结果才能和实验结果是相符。这样的一份能量叫做能量子,每一份能量子等于普朗克常數乘以辐射电磁波的频率。这关系称为普朗克关系,用方程式表示普朗克关系式: 其中,E 是能量,h 是普朗克常數,\nu 是频率。 普朗克常數的值約為: 普朗克常數的量綱為能量乘上時間,也可視為動量乘上位移量: (牛頓(N)·公尺(m)·秒(s))為角動量單位.

查看 电子衍射和普朗克常数

另见

应用物理

散射

晶体学

电子显微术

繞射

電子