徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

透射电子显微镜

指数 透射电子显微镜

透射电子显微镜(Transmission electron microscope,縮寫:TEM、CTEM),简称--电镜,是把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。散射角的大小与样品的密度、厚度相关,因此可以形成明暗不同的影像,影像将在放大、聚焦后在成像器件(如荧光屏、胶片、以及感光耦合组件)上显示出来。 由于电子的德布罗意波长非常短,--电子显微镜的分辨率比光学显微镜高的很多,可以达到0.1~0.2nm,放大倍数为几万~百万倍。因此,使用透射电子显微镜可以用于观察样品的精细结构,甚至可以用于观察仅仅一列原子的结构,比光学显微镜所能够观察到的最小的结构小数万倍。TEM在中和物理学和生物学相关的许多科学领域都是重要的分析方法,如癌症研究、病毒学、材料科学、以及纳米技术、半导体研究等等。 在放大倍数较低的时候,TEM成像的对比度主要是由于材料不同的厚度和成分造成对电子的吸收不同而造成的。而当放大率倍数较高的时候,复杂的波动作用会造成成像的亮度的不同,因此需要专业知识来对所得到的像进行分析。通过使用TEM不同的模式,可以通过物质的化学特性、晶体方向、电子结构、样品造成的电子相移以及通常的对电子吸收对样品成像。 第一台TEM由马克斯·克诺尔和恩斯特·鲁斯卡在1931年研制,这个研究组于1933年研制了第一台分辨率超过可见光的TEM,而第一台商用TEM于1939年研制成功。.

62 关系: 功函数半导体单晶密度尤利乌斯·普吕克帕斯卡平均自由程底片代尔夫特低温电子显微镜六硼化镧光子光学显微镜玻尔兹曼分布球面像差磁場磁饱和磁阻磁滞现象第二次世界大战紫外线纳米技术热冲击病毒学生物学电子电子衍射电子能量损失谱电子显微镜物理学相衬显微技术芝加哥大学隔膜泵衍射西门子公司质量轨迹球门阀里克色差電場透磁合金透镜陰極射線控制杆恩斯特·鲁斯卡恩斯特·阿贝材料科学步进电机...比尔-朗伯定律波動角度波长洛伦兹力振幅测微计散射散光扫描电子显微镜普朗克常数晶体缺陷晶粒 扩展索引 (12 更多) »

功函数

功函数(又称功函、逸出功,英语:Work function)是指要使一粒电子立即从固体表面中逸出,所必须提供的最小能量(通常以电子伏特为单位)。这里“立即”一词表示最终电子位置从原子尺度上远离表面但从宏观尺度上依然靠近固体。功函数不是材料体相的本征性质,更准确的说法应为材料表面的性质(比如表面暴露晶面情况和受污染程度)功函数是金属的重要属性。功函数的大小通常大概是金属自由原子电离能的二分之一。.

新!!: 透射电子显微镜和功函数 · 查看更多 »

半导体

半导体(Semiconductor)是指一种导电性可受控制,范围可从绝缘体至导体之间的材料。无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。今日大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关连。常见的半导体材料有硅、锗、砷化镓等,而硅更是各种半导体材料中,在商业应用上最具有影响力的一种。 材料的导电性是由导带中含有的电子数量决定。当电子从价带获得能量而跳跃至导电带时,电子就可以在带间任意移动而导电。一般常见的金属材料其导电带与价电带之间的能隙非常小,在室温下电子很容易获得能量而跳跃至导电带而导电,而绝缘材料则因为能隙很大(通常大于9电子伏特),电子很难跳跃至导电带,所以无法导电。 一般半导体材料的能隙约为1至3电子伏特,介于导体和绝缘体之间。因此只要给予适当条件的能量激发,或是改变其能隙之间距,此材料就能导电。 半导体通过电子传导或電洞傳导的方式传输电流。电子传导的方式与铜线中电流的流动类似,即在电场作用下高度电离的原子将多余的电子向着负离子化程度比较低的方向传递。電洞导电则是指在正离子化的材料中,原子核外由于电子缺失形成的“空穴”,在电场作用下,空穴被少数的电子补入而造成空穴移动所形成的电流(一般称为正电流)。 材料中载流子(carrier)的数量对半导体的导电特性极为重要。这可以通过在半导体中有选择的加入其他“杂质”(IIIA、VA族元素)来控制。如果我們在純矽中摻雜(doping)少許的砷或磷(最外層有5個電子),就會多出1個自由電子,這樣就形成N型半導體;如果我們在純矽中摻入少許的硼(最外層有3個電子),就反而少了1個電子,而形成一個電洞(hole),這樣就形成P型半導體(少了1個帶負電荷的原子,可視為多了1個正電荷)。.

新!!: 透射电子显微镜和半导体 · 查看更多 »

单晶

单晶是指其内部微粒有规律地排列在一个空间格子内的晶体。其晶体结构是连续的,或者可以说,在宏观尺度范围内单晶不包含晶界。 与单晶相对的,是众多晶粒(Crystallite)组成的多晶(Polycrystal)。 单晶材料是一种应用日益广泛的新材料,由单独的一个晶体组成,其衍射花样为规则的点阵。相对普通的多晶体材料性能特殊,一般采用提拉法制备。 單晶根據晶體生長法製作分為:.

新!!: 透射电子显微镜和单晶 · 查看更多 »

密度

3 | symbols.

新!!: 透射电子显微镜和密度 · 查看更多 »

尤利乌斯·普吕克

尤利乌斯·普吕克(Julius Plücker,),德国数学家和物理学家。他曾为解析几何作出过许多基礎贡献;同时它还是阴极射线研究的先驱者之一,该研究后来导致了电子的发现。此外,他还极大地拓展了对拉梅曲线的研究。.

新!!: 透射电子显微镜和尤利乌斯·普吕克 · 查看更多 »

帕斯卡

帕斯卡(符號Pa或Pascal)是國際單位制(SI)的壓強單位。在不致混淆的情況下也可簡稱為「帕」。它等於每平方米一牛頓。以法國學者(同時身兼數學家、物理學家、化學家、音樂家、宗教家、教育家、氣象學家、哲學家)布莱茲·帕斯卡之名而命名。百帕(hPa)和千帕(kPa)也是自Pa衍生出來的氣象常用單位,正常海平面約101kPa、或1013百帕。.

新!!: 透射电子显微镜和帕斯卡 · 查看更多 »

平均自由程

气体分子的平均自由程(Mean free path)指气体分子两次碰撞之间的时间内经过的路程的统计平均值,一般用\overline\,表示。例如,在20℃下、标准大气压(101 KPa)下,氮气分子的平均自由程约为60纳米。 理想气体分子两次碰撞之间做匀速直线运动,类似分子的平均碰撞频率,每两次碰撞之间的路程是由气体分子的自身状态决定的。气体分子的平均自由程与分子的直径或半径、分子数密度成反比。.

新!!: 透射电子显微镜和平均自由程 · 查看更多 »

底片

底片,是一种製成影像物料。现今广泛应用的底片是将卤化银涂抹在聚乙酸酯片基上,此種底片為軟性,捲成整捲方便使用,所以又稱膠卷,当有光线照射到卤化银上时,卤化银转变为黑色的银,经显影工艺后固定于片基,成为我们常见到黑白负片。彩色负片则涂抹了三层卤化银以表现三原色。除了负片之外还有正片及一次成像底片等等。 早期的底片用玻璃作片基,19世紀晚期塑膠工業技術成熟,壓成薄片的塑膠片取代玻璃成為片基。 底片以感光速度(din/ISO)來分別,由最低速之ISO25度至高速之ISO3200,一般來說感光度越低,畫質越細膩。最常用的膠卷為din21度/ISO100,其次是快片,即din24度/ISO200。其它速度的膠卷,由於價格,冲片技術要求特殊,在2000年左右數位攝影興起後,幾乎只有專業人士才會使用。但由於復古風興起的緣故,底片又再次稍為普及。.

新!!: 透射电子显微镜和底片 · 查看更多 »

代尔夫特

代尔夫特(Delft,),又譯台夫特,是荷兰南荷兰省的一个城市,地处海牙和鹿特丹之间。由于拥有荷兰高等学府代尔夫特理工大学和研究机构荷兰应用科学研究所,代尔夫特也被称为知识之城。.

新!!: 透射电子显微镜和代尔夫特 · 查看更多 »

低温电子显微镜

低温电子显微镜技術(Cryo-electron microscopy,缩写:cryo-EM)或电子低温显微镜技术,是透射电子显微镜(TEM)的其中样品在低温(通常是液氮温度)下进行研究的一种技术。低温电子显微镜在结构生物学方面越来越受欢迎。 低温电子显微镜的实用性来源于它允许观察未以任何方式被染色或固定的标本,在它们的自然环境中被显示。这与X射线晶体学相反,需要使样品结晶,这样做可能是困难的,并将其置于非生理环境中,这偶尔会导致功能上无关的构象变化。 低温电子显微镜图片的分辨率稳步提高,并且在2014年分辨率在一些结构中达到了接近原子级的分辨率,包括病毒,核糖体,线粒体,离子通道,和酶复合物,小至170kDa的一些结构的分辨率达到4.5Å。2017年,雅克·杜博歇、約阿希姆·弗蘭克及理查德·亨德森因其在低温电子显微镜技术的發展而獲頒諾貝爾化學獎。.

新!!: 透射电子显微镜和低温电子显微镜 · 查看更多 »

六硼化镧

六硼化镧是一种无机化合物,化学式为LaB6。它是一个超导体,相变温度只有0.45 K。.

新!!: 透射电子显微镜和六硼化镧 · 查看更多 »

光子

| mean_lifetime.

新!!: 透射电子显微镜和光子 · 查看更多 »

光学显微镜

光学显微镜是一种利用光学透镜产生影像放大效应的显微镜。 由物体入射的光被至少两个光学系统(物镜和目镜)放大。首先物镜产生一个被放大实像,人眼通过作用相当于放大镜的目镜观察这个已经被放大了的实像。一般的光学显微镜有多个可以替换的物镜,这样观察者可以按需要更换放大倍数。这些物镜一般被安置在一个可以转动的物鏡盤上,转动物镜盘就可以使不同的物镜方便地进入光路,物鏡盤的英文是Nosepiece,又譯作鼻輪。 十八世纪,光学显微镜的放大倍率已经提高到了1000倍,使人们能用眼睛看清微生物体的形态、大小和一些内部结构。直到物理学家发现了放大倍率与分辨率之间的规律,人们才知道光学显微镜的分辨率是有极限的,分辨率的这一极限限制了放大倍率的无限提高,1600倍成了光学显微镜放大倍率的最高极限,使得形态学的应用在许多领域受到了很大限制。 光学显微镜的分辨率受到光波长的限制,一般不超过0.3微米。假如显微镜使用紫外线作为光源或物体被放在油中的话,分辨率还可以得到提高。 光学显微镜依樣品的不同可分為反射式和透射式。反射显微镜的物体一般是不透明的,光从上面照在物体上,被物体反射的光进入显微镜。这种显微镜经常被用来观察固体等,多應用在工學、材料領域,在正立顯微鏡中,此類顯微鏡又稱作金相顯微鏡。透射显微镜的物体是透明的或非常薄,光从可透过它进入显微镜。这种显微镜常被用来观察生物组织。 光學顯微鏡依其聚光鏡(condenser)和物鏡(Objective)的設計,可用來觀察不同的樣品。明視野(Brightfield)用來觀察薄的染色生物組織樣品,暗視野(Darkfield)功能的視野下,背景為黑色,能突顯樣品的細微面貌,觀察未染色樣品時,如活細胞,可利用相位差(Phase)功能。另外還有微分干涉差(differential interference contrast,DIC)功能,都常搭配在光學顯微鏡上。 依光源的不同,還有螢光顯微鏡、共聚焦顯微鏡等類別。 2014年10月8日,诺贝尔化学奖颁给了艾力克·贝齐格 (Eric Betzig),W·E·莫尔纳尔 (William Moerner)和斯特凡·W·赫尔 (Stefan Hell),奖励其发展超分辨荧光显微镜 (Super-Resolved Fluorescence Microscopy),这将带来光学显微镜进入纳米级尺度中。.

新!!: 透射电子显微镜和光学显微镜 · 查看更多 »

玻尔兹曼分布

在統計力學與數學中,波茲曼分布(或稱吉布斯分布 Translated by J.B. Sykes and M.J. Kearsley.

新!!: 透射电子显微镜和玻尔兹曼分布 · 查看更多 »

球面像差

在光學中,球面像差是發生在經過透鏡折射或面鏡反射的光線,接近中心與靠近邊緣的光線不能將影像聚集在一個點上的現象。這在望遠鏡和其他的光學儀器上都是一個缺點。這是因為透镜和面鏡必须满足所需的形狀,否则不能聚焦在一個點上造成的。 球面像差與鏡面直徑的四次方成正比,與焦長的三次方成反比,所以他在低焦比的鏡子,也就是所謂的「快鏡」上就比較明顯。 對使用球面鏡的小望遠鏡,當焦比低於f/10時,來自遠處的點光源(例如恆星)就不能聚集在一個點上。特別是來自鏡面邊緣的光線比來自鏡面中心的光線更不易聚焦,這造成影像因為球面像差的存在而不能很尖銳的成象。所以焦比低於f/10的望遠鏡通常都使用非球面鏡或加上修正鏡。 在透鏡系統中,可以使用凸透鏡和凹透鏡的組合來減少球面像差,就如同使用非球面透鏡一樣。 File:Spherical_aberration_2.svg|球面像差。一個理想的鏡面(頂端),能經所有入射的光線匯聚在光軸上的一個點,但一個真實的鏡面(底端)會有球面像差:靠近光軸的光線會比離光軸較遠的光線較為緊密的匯聚在一個點上,因此光線不能匯聚在一個理想的焦點上(圖較為誇張) File:spherical-aberration-disk.jpg|一個 點光源 在負球面像差(上) 、無球面像差(中)、和正球面像差(下)的系統中的成像情形。左面的影像是在焦點內成像,右邊是在焦點外的成像 File:spherical-aberration-slice.jpg|平行光束通過透鏡後聚焦像的縱切面,上:負球面像差,中:無球面像差,下:正球面像差。鏡子位於圖的左側 File:Circle caustic.png|thumb|來自球面鏡的球面像差.

新!!: 透射电子显微镜和球面像差 · 查看更多 »

磁場

在電磁學裡,磁石、磁鐵、電流及含時電場,都會產生磁場。處於磁場中的磁性物質或電流,會因為磁場的作用而感受到磁力,因而顯示出磁場的存在。磁場是一種向量場;磁場在空間裡的任意位置都具有方向和數值大小更精確地分類,磁場是一種贗矢量。力矩和角速度也是準向量。當坐標被反演時,準向量會保持不變。。 磁鐵與磁鐵之間,通過各自產生的磁場,互相施加作用力和力矩於對方。運動中的電荷亦會產生磁場。磁性物質產生的磁場可以用電荷運動模型來解釋基本粒子,像電子或正子等等,會產生自己內有的磁場,這是一種相對論性效應,並不是因為粒子運動而產生的。但是,對於大多數狀況,這磁場可以模想為是由粒子所載有的電荷因為旋轉運動而產生的。因此,這相對論性效應稱為自旋。磁鐵產生的磁場主要是由內部未配對電子的自旋形成的。。 當施加外磁場於物質時,磁性物質的內部會被磁化,會出現很多微小的磁偶極子。磁化強度估量物質被磁化的程度。知道磁性物質的磁化強度,就可以計算出磁性物質本身產生的磁場。產生磁場需要輸入能量,當磁場被湮滅時,這能量可以再回收利用,因此,這能量被視為儲存於磁場。 電場是由電荷產生的。電場與磁場有密切的關係;含時磁場會生成電場,含時電場會生成磁場。馬克士威方程組描述電場、磁場、產生這些向量場的電流和電荷,這些物理量之間的詳細關係。根據狹義相對論,電場和磁場是電磁場的兩面。設定兩個參考系A和B,相對於參考系A,參考系B以有限速度移動。從參考系A觀察為靜止電荷產生的純電場,在參考系B觀察則成為移動中的電荷所產生的電場和磁場。 在量子力學裏,科學家認為,純磁場(和純電場)是虛光子所造成的效應。以標準模型的術語來表達,光子是所有電磁作用的顯現所依賴的媒介。對於大多數案例,不需要這樣微觀的描述,在本文章內陳述的簡單經典理論就足足有餘了;在低場能量狀況,其中的差別是可以忽略的。 在古今社會裡,很多對世界文明有重大貢獻的發明都涉及到磁場的概念。地球能夠產生自己的磁場,這在導航方面非常重要,因為指南針的指北極準確地指向位置在地球的地理北極附近的地磁北極。電動機和發電機的運作機制是倚賴磁鐵轉動使得磁場隨著時間而改變。通過霍爾效應,可以給出物質的帶電粒子的性質。磁路學專門研討,各種各樣像變壓器一類的電子元件,其內部磁場的相互作用。.

新!!: 透射电子显微镜和磁場 · 查看更多 »

磁饱和

磁饱和是铁磁性或亚铁磁性材料(例如铁、镍、钴、锰和它们的合金等)中的一種特性。在磁饱和之前,若增大外加磁場强度H,材料會磁化,磁通密度B會對應增加,但當磁場强度H大到一定程度,磁通密度B只會因真空磁导率而緩慢增加,此即為磁饱和。.

新!!: 透射电子显微镜和磁饱和 · 查看更多 »

磁阻

磁阻,是一个与电路中的电阻类似的概念。电流总是沿着电阻最小的路径前进;磁通量总是沿着磁阻最小的路径前进。磁阻与电阻一样,都是一个标量。.

新!!: 透射电子显微镜和磁阻 · 查看更多 »

磁滞现象

磁滞现象是指铁磁性物理材料(例如:鐵)在磁化和去磁过程中,铁磁质的磁化强度不仅依赖于外磁场强度,还依赖于原先磁化强度的现象。 当外加磁场施加于铁磁质时,其原子的偶极子按照外加场自行排列。即使当外加场被撤离,部分排列仍保持:此时,该材料被磁化。 一旦被磁化了,其磁性會繼續保留。要消磁的話,只要施加相反方向的磁場就可以了。這亦是硬碟的記憶運作原理。 在铁磁质中,磁场强度()和磁感应强度()之间的关系是非线性的。如果在增强场强条件下,此二者关系将呈曲线上升到某点,到达此点后,即使场强H继续增加,磁感应强度B也不再增加。该情况被称为磁饱和(magnetic saturation)。 如果此时磁场线性降低,该线性关系将以另一条曲线返回到0场强的某点,该点的B将被初始曲线的磁感应强度量BR叫做剩磁感应强度或剩磁(remanent flux density) 相抵消。 如果绘制以外加磁场的全部强度的二者关系图,将为S形的回路。S的中间厚度描述了磁滞量,该量与材料的矫顽力 相关。 该现象的实际影响可为,例如,当通过磁芯的外加电流被撤离,由于残留磁场继续吸引电枢,而引起滞后从而延迟磁能的释放。 对于一种特殊材料,该曲线会影响一个磁路的设计。 为了最小化该影响和减小相关的能量损失,从而采用具有低矫顽力和低迟滞损失的铁磁性物质,例如坡莫合金(铁镍合金,透磁合金)。 在很多应用中,由回路中不同点驱动产生的小的迟滞回路存在于B-H层中。接近原点的各回路有一个较大的µ(磁导率)。回路越小,其磁性形状越柔和。一个特例就是,用一个降低的交流电场去磁化任何材料。.

新!!: 透射电子显微镜和磁滞现象 · 查看更多 »

第二次世界大战

二次世界大戰(又常簡稱二次大戰、二戰、WWII等;World War II;Seconde Guerre mondiale;Zweiter Weltkrieg;Вторая мировая война;第二次世界大戰)是一次自1939年至1945年所爆發的全球性軍事衝突,整場戰爭涉及到全球絕大多數的國家,包括所有的大國,并最終分成了兩個彼此對立的軍事同盟─同盟國和軸心國。這次戰爭是人類歷史上最大規模的戰爭,動員了1億多名軍人參與這次軍事衝突。主要的參戰國紛紛宣布進入總體戰狀態,幾乎將自身國家的全部經濟、工業和科學技術應用於戰爭之上,同時也將民用與軍用的資源合併以方便統籌規劃。包括有猶太人大屠殺、南京大屠殺、戰爭中日軍對中國軍民進行細菌戰、以及最终美國對日本首次使用原子彈等事件,使得第二次世界大戰也是自有紀錄以來涉及最多大規模民眾死亡案例的軍事衝突,全部總計便將近有5,000萬至7,000萬人因而死亡,這也讓第二次世界大戰成了人類歷史上死亡人數最多的戰爭。 儘管早在1931年9月,日本便侵佔了中國的滿洲,而後建立了傀儡國家滿洲國。至1937年7月盧溝橋事變後中日更爆發了全面戰爭。不過大多數人仍多把第二次世界大戰的爆發定為1939年9月1日德國入侵波蘭開始,這次入侵行動隨即導致英國與法國向德國宣戰。然而德國在入侵波蘭後開始著手嘗試在歐洲建立一個大帝國,自1939年末期到1941年初期為止,發動一連串戰爭並藉由條約的簽署使得德國幾乎佔領了歐洲絕大部分的地區,而名義上保持中立的蘇聯在和德國簽訂《德蘇互不侵犯條約》後,也跟進侵略潮流,陸續佔領或者吞併了其在歐洲邊界的鄰近6個國家,在這之中也包括第二次世界大戰爆發時所佔領的波蘭領土。英國以及大英國協的成員國則堅持持續與軸心國繼續作戰,並分別在北非和大西洋海上發生多次軍事衝突,而這也使得英國成了歐洲地區少數仍能繼續反抗德軍入侵的主要武力之一。1941年6月,歐洲的軸心國集團決定撕毀與蘇聯的合作約定,聯合入侵蘇聯領土,這次攻勢也開始了人類歷史上規模最大的地面戰爭爆發,但也在之後讓原本幾乎統轄整個歐洲地區的軸心國被迫投入大量軍力來維持作戰優勢。到了1941年12月,已經加入軸心國的大日本帝國為了能夠在亞洲及太平洋地區獲得領導地位,陸續襲擊位于太平洋的美國統轄地區和座落於與中南半島的歐洲殖民地,很快地於西太平洋和東亞戰區獲得了主導權。 到了1942年時日本開始在一系列的海戰中戰敗,位於歐洲的軸心國也陸續於北非戰役以及斯大林格勒戰役中節節敗退,這些都迫使軸心國停下進攻的腳步。1943年時,義大利法西斯政權在西西里島戰役中面對同盟國部隊嚴重失利,另一方面德軍在库尔斯克会战戰敗後失去對於東歐的領導地位,同時美國也在太平洋戰區中獲得了一連串的勝利,自此軸心國集團逐漸失去主導權並開始嘗試將佈署於各地的前線部隊進行戰略性的撤退。到了1944年時,盟軍決定登陸法國以開闢第二戰場,而蘇聯除了成功收復過去被佔領的領土外,也開始轉往進攻德國與其同盟國家的土地。在蘇聯和波蘭部隊共同攻入柏林後,第二次世界大戰歐洲戰區最終在1945年5月8日德國投降的情況下宣告結束。而另一方面美國在1944年和1945年成功擊敗了日本海軍部隊並陸續佔領了數個重要的西太平洋島嶼,這使得日本列島隨時面臨同盟國部隊入侵的危機。最後在美軍分別於廣島市和長崎市投下原子彈並造成大量日本平民死亡。1945年8月8日蘇聯進攻日本控制下的中國東北地區,8月14日日本跟進宣佈願意接受無條件投降的條件,而隨著亞洲戰事的停息也意味著第二次世界大戰正式結束。 1945年時第二次世界大戰以同盟國勝利宣告結束,然而二次大戰對世界影響極為深遠,改變了往後世界的政治版圖和社會結構,特別是戰敗的軸心國集團被迫接受同盟國的安排。1945年10月24日聯合國亦宣告成立,期望能夠促進各國合作並防止未來的軍事衝突;同時戰勝的盟軍各國,也紛紛在聯合國各個機構中擔任重要職位,特別是以美國、蘇聯、中國、英國和法國5個國家為首成立聯合國聯合國安全理事會的常任理事國,主導著世界的秩序.

新!!: 透射电子显微镜和第二次世界大战 · 查看更多 »

紫外线

紫外線(Ultraviolet,簡稱為UV),為波長在10nm至400nm之間的電磁波,波長比可見光短,但比X射線長。太陽光中含有部分的紫外線,電弧、水銀燈、黑光燈也會發出紫外線。雖然紫外線不屬於游離輻射但紫外線仍會引發化學反應與使一些物質發出螢光。 而小于200纳米的紫外線輻射會被空氣強烈的吸收,因此稱之為真空紫外線The ozone layer protects humans from this.

新!!: 透射电子显微镜和紫外线 · 查看更多 »

纳米技术

納米技术(Nanotechnology)是一门应用科学,其目的在于研究于奈米规模时,物质和设备的设计方法、组成、特性以及应用。奈米科技是许多如生物、物理、化学等科学领域在技术上的次级分类,美国将其定义为「1至100奈米尺寸尤其是现存科技在奈米规模时的延伸」。奈米科技的世界为原子、分子、高分子、量子点集合,并且被表面效应所掌控,如范德瓦耳斯力、氢键、电荷、离子键、共价键、疏水性、亲水性和量子穿隧效应等,而惯性和湍流等巨观效应则小得可以被忽略掉。举个例子,当表面积对体积的比例剧烈地增大时,开起了如催化学等以表面为主的科学新的可能性。 微小性的持续探究使得新的工具诞生,如原子力显微镜和扫描隧道显微镜等。结合如电子束微影之类的精确程序,这些设备将使我们可以精密地运作并生成奈米结构。奈米材质,不论是由上至下制成(将块材缩至奈米尺度,主要方法是从块材开始通过切割、蚀刻、研磨等办法得到尽可能小的形状(比如超精度加工,难度在于得到的微小结构必须精确)。或由下至上制成(由一颗颗原子或分子来组成较大的结构,主要办法有化学合成,自组装和定点组装(positional assembly)。难度在于宏观上要达到高效稳定的质量,都不只是进一步的微小化而已。物体内电子的能量量子化也开始对材质的性质有影响,称为量子尺度效应,描述物质内电子在尺度剧减后的物理性质。这一效应不是因为尺度由巨观变成微观而产生的,但它确实在奈米尺度时占了很重要的地位。 纳米科技的神奇之处在于物质在纳米尺度下所拥有的量子和表面现象,因此可以有许多重要的应用,也可以制造许多有趣的材质。.

新!!: 透射电子显微镜和纳米技术 · 查看更多 »

热冲击

热冲击(Thermal shock):热辐射使物体受到局部快速加热;称为受到热冲击。结果是,由于物体各部温度升高速度不同;膨胀程度也不同;故其内部产生应变和应力;有些应力可超过脆性固体的强度,而使它断裂。热膨胀系数大的玻璃器皿,局部受热而破裂是一典型例子。 热冲击使物体所产生应力差别大的原因有二:1.物体局部受热速度过快;2.物体的热膨胀系数大。因而,想避免受热冲击导致物体破裂的主要方法有三个方面:1.避免受热冲击;使物体缓慢而均匀受热;2.选用热膨胀系数小的物体;3.选用强度高热导好的材料。.

新!!: 透射电子显微镜和热冲击 · 查看更多 »

病毒学

病毒学是一门以病毒 -- 亚微观的,蛋白质外壳中包含的遗传物质的寄生颗粒 - 和病毒样代理(virus-like agents)为研究对象的学科。它关注病毒的以下方面:病毒的结构,分类和进化,感染和开发宿主细胞繁殖的方式,它们与宿主生物体生理和免疫的相互作用,它们引起的疾病,分离和培养它们的技术,以及它们在研究和治疗中的应用。病毒学被认为是微生物学或医学的一个子领域。.

新!!: 透射电子显微镜和病毒学 · 查看更多 »

生物学

生物学研究各種生命(上图) 大肠杆菌、瞪羚、(下图)大角金龟甲虫 、蕨類植物 生物學(βιολογία;biologia;德語、法語:biologie;biology)或稱生物科學(biological sciences)、生命科學(life sciences),是自然科學的一大門類,由經驗主義出發,廣泛研究生命的所有方面,包括生命起源、演化、分佈、構造、發育、功能、行為、與環境的互動關系,以及生物分類學等。現代生物學是一個龐大而兼收並蓄的領域,由許多分支和分支學科組成。然而,盡管生物學的範圍很廣,在它裡面有某些一般和統一概念支配一切的學習和研究,把它整合成單一的,和連貫的領域。在總體上,生物以細胞作為生命的基本單位,基因作為遺傳的基本單元,和進化是推動新物種的合成和創建的引擎。今天人們還了解,所有生物體的生存以消耗和轉換能量,調節體內環境以維持穩定的和重要的生命條件。 生物學分支學科被研究生物體的規模所定義,和研究它們使用的方法所定義:生物化學考察生命的基本化學;分子生物學研究生物分子之間錯綜復雜的關系;植物學研究植物的生物學;細胞生物學檢查所有生命的基本組成單位,細胞;生理學檢查組織,器官,和生物體的器官系統的物理和化學的功能;進化生物學考察了生命的多樣性的產生過程;和生態學考察生物在其環境如何相互作用。最終能夠達到治療診斷遺傳病、提高農作物產量、改善人類生活、保護環境等目的。.

新!!: 透射电子显微镜和生物学 · 查看更多 »

电子

电子(electron)是一种带有负电的次原子粒子,通常标记为 e^- \,\!。電子屬於轻子类,以重力、電磁力和弱核力與其它粒子相互作用。轻子是构成物质的基本粒子之一,无法被分解为更小的粒子。电子带有1/2自旋,是一种费米子。因此,根據泡利不相容原理,任何兩個電子都不能處於同樣的狀態。电子的反粒子是正电子(又称正子),其质量、自旋、帶电量大小都与电子相同,但是电量正負性与电子相反。電子與正子會因碰撞而互相湮滅,在這過程中,生成一對以上的光子。 由电子與中子、质子所组成的原子,是物质的基本单位。相对于中子和质子所組成的原子核,电子的质量显得极小。质子的质量大约是电子质量的1836倍。当原子的电子数与质子数不等时,原子会带电;称該帶電原子为离子。当原子得到额外的电子时,它带有负电,叫阴离子,失去电子时,它带有正电,叫阳离子。若物体带有的电子多于或少于原子核的电量,导致正负电量不平衡时,称该物体带静电。当正负电量平衡时,称物体的电性为电中性。靜電在日常生活中有很多用途,例如,靜電油漆系統能夠將或聚氨酯漆,均勻地噴灑於物品表面。 電子與質子之間的吸引性庫侖力,使得電子被束縛於原子,稱此電子為束縛電子。兩個以上的原子,會交換或分享它們的束縛電子,這是化學鍵的主要成因。当电子脱离原子核的束缚,能够自由移动时,則改稱此電子为自由电子。许多自由电子一起移动所产生的净流动现象称为电流。在許多物理現象裏,像電傳導、磁性或熱傳導,電子都扮演了機要的角色。移動的電子會產生磁場,也會被外磁場偏轉。呈加速度運動的電子會發射電磁輻射。 根據大爆炸理論,宇宙現存的電子大部份都是生成於大爆炸事件。但也有一小部份是因為放射性物質的β衰變或高能量碰撞而生成的。例如,當宇宙線進入大氣層時遇到的碰撞。在另一方面,許多電子會因為與正子相碰撞而互相湮滅,或者,會在恆星內部製造新原子核的恆星核合成過程中被吸收。 在實驗室裏,精密的尖端儀器,像四極離子阱,可以長時間局限電子,以供觀察和測量。大型托卡馬克設施,像国际热核聚变实验反应堆,藉著局限電子和離子電漿,來實現受控核融合。無線電望遠鏡可以用來偵測外太空的電子電漿。 電子被广泛應用于電子束焊接、陰極射線管、電子顯微鏡、放射線治療、激光和粒子加速器等领域。.

新!!: 透射电子显微镜和电子 · 查看更多 »

电子衍射

电子繞射,是指电子在通过某些障碍物时发生衍射的现象。因为波粒二象性的存在,电子也可被当做是波,从而也能产生衍射现象。电子的波长满足德布罗意波长公式: h表示普朗克常数,p表示动量。由于电子的动量较光子大得多,因而其波长也短得多。所以想使电子发生衍射时就需要更微小的障碍物,实验上一般是采用晶体。另外,正是由于电子比光子更难发生衍射,电子显微镜的分辨率比光学显微镜的更高。 当电子波穿过晶体的时候,被晶体中的原子散射,散射的电子波互相之间干涉所产生的现象就是电子衍射。晶体中每个原子均会对电子进行散射,使得波长和方向发生变化。并且部分电子会与晶体中的原子发生能量交换作用,若电子波长发生变化,则称为非弹性散射;若没有波长变化,则称为弹性散射。 电子衍射的图像一般是该图像呈现规则的斑点,衍射图像是由同心圆组成的。多晶的是一系列规则的同心圆,而非晶的是由分散的同心圆组成的。 电子衍射是最经常用于固体物理和化学研究固体的晶体结构。实验通常是在透射电子显微镜(TEM)或扫描电子显微镜(SEM),为进行。电子衍射用来做物相鉴定、测定原子位置等。与X射线相比,电子更容易被物体吸收,所以更加精确,适合于研究微薄膜、小晶体。.

新!!: 透射电子显微镜和电子衍射 · 查看更多 »

电子能量损失谱

电子能量损失谱(Electron energy loss spectroscopy,縮寫:EELS)是物理学及材料科学等研究领域的重要表征手段,该技术始于1940年代。在电子能量损失光谱(EELS)中,具有已知动能的电子束入射待测材料后,部分电子与原子相互作用发生非弹性散射,损失部分能量并且路径发生随机的小偏转,这个过程中能量损失的大小经测量并得以分析解释。通过研究非弹性散射电子的能量损失分布,可以得到原子中电子的空间环境信息,从而研究样品的多种物理和化学性质。.

新!!: 透射电子显微镜和电子能量损失谱 · 查看更多 »

电子显微镜

電子顯微鏡(electron microscope,簡稱電鏡或電顯)是使用電子來展示物件的內部或表面的顯微鏡。 高速的電子的波長比可見光的波長短(波粒二象性),而顯微鏡的分辨率受其使用的波長的限制,因此電子顯微鏡的分辨率(約0.2奈米)遠高於光學顯微鏡的分辨率(約200奈米)。.

新!!: 透射电子显微镜和电子显微镜 · 查看更多 »

物理学

物理學(希臘文Φύσις,自然)是研究物質、能量的本質與性質,以及它們彼此之間交互作用的自然科學。由於物質與能量是所有科學研究的必須涉及的基本要素,所以物理學是自然科學中最基礎的學科之一。物理學是一種實驗科學,物理學者從觀測與分析大自然的各種基於物質與能量的現象來找出其中的模式。這些模式(假說)稱為「物理理論」,經得起實驗檢驗的常用物理理論稱為物理定律,直到有一天被證明是有錯誤為止(具可否證性)。物理學是由這些定律精緻地建構而成。物理學是自然科學中最基礎的學科之一。化學、生物學、考古學等等科學學術領域的理論都是建構於這些物理定律。 物理學是最古老的學術之一。物理學、化學、生物學等等原本都歸屬於自然哲學的範疇,直到十七世紀至十九世紀期間,才漸漸地從自然哲學中分別成長為獨立的學術領域。物理學與其它很多跨領域研究有相當的交集,如量子化學、生物物理學等等。物理學的疆界並不是固定不變的,物理學裡的創始突破時常可以用來解釋這些跨領域研究的基礎機制,有時還會開啟嶄新的跨領域研究。 通過創建新理論與發展新科技,物理學對於人類文明有極為顯著的貢獻。例如,由於電磁學的快速發展,電燈、電動機、家用電器等新產品纷纷涌现,人類社會的生活水平也得到大幅提升。由於核子物理學日趨成熟,核能發電已不再是藍圖構想,但其所引致的安全問題也使人們意識到地球環境、生態與人類的脆弱渺小。.

新!!: 透射电子显微镜和物理学 · 查看更多 »

相衬显微技术

衬显微技术是一种光学显微技术,光线在穿过透明的样品时会产生微小的相位差,而这个相位差可以被转换为图象中的幅度或对比度的变化,这样就可以利用相位差来成像。 光线在穿过非真空介质时,会与介质发生作用从而产生幅度和相位的变化,这种变化与介质的性质相关。幅度的变化通常是由于介质对光的吸收,变化程度与波长也就是光的颜色相关,而介质的厚度、折射率的变化会导致光线相位的改变。人的眼睛仅能测量到达视网膜的光线的能量强度,而很难观察到相位的改变,普通的光学显微镜也无法检测相位的改变。然而相位的变化通常也会携带相当多的信息,但是在对光线进行测量的时候这部分信息就全部丢弃了。为了使相位变化的信息可以被观察到,就需要将穿过样品的光线与参考光源l相结合,相干的结果可以显示出样品的相位结构。 相衬显微镜观察样品时不需要进行染色,在观察细胞的时候也就不会对细胞标本产生伤害,因此这种显微镜可以用来研究细胞周期。.

新!!: 透射电子显微镜和相衬显微技术 · 查看更多 »

芝加哥大学

芝加哥大学(University of Chicago),简称芝大(UChicago),位于美国伊利诺伊州芝加哥,是世界著名私立研究型大学,常年位列各大学排行榜世界前十。 芝加哥大学1890年由石油大王约翰·洛克菲勒创办,是美国大学协会的创始会员之一。芝加哥大学包括本科学院以及由4个系、6所职业学院和1所继续教育学院组成的各种研究生项目和跨学科委员会,并拥有约5000名本科生和10,000名研究生。 芝加哥大学的学者和研究人员在众多人文社科领域均开创了“芝加哥学派”,其中包括著名的“芝加哥经济学派”和“芝加哥社会学派” ;芝加哥大学还是法律经济学的诞生地,是经济学、社会学、法学、人类学等学科全球最重要的研究教学中心之一。 而从曼哈顿计划开始,大批科学家汇集于芝大,在“原子能之父”恩里科·费米的领导下建立了世界上第一台可控核反应堆(”芝加哥一号堆”)、成功开启了人类的原子能时代,并创立了美国第一所国家实验室阿贡国家实验室和之后著名的费米实验室,进而奠定了芝大在自然科学界的重要地位。 截止至2017年,芝加哥大学有97位教师和校友曾获得诺贝尔奖,位列世界第四。另有9位菲尔兹奖得主 、4位图灵奖得主、22位普利策奖得主在芝大工作或学习过,还有15位教授荣获过美国国家科学奖章,现任教授中有近70位美国国家科学院(44位)、美国国家工程院(9位)和美国国家医学院院士(14位)。美国第44任总统奥巴马曾长期在芝大法学院任教(1992-2004年)。 芝加哥大学是培养华人精英的两个摇篮和聚集地之一(另一个是柏克萊加州大學)。芝加哥大学培养了李政道、杨振宁和崔琦三个华人诺贝尔奖得主(其中,李政道和杨振宁实现华人诺奖零的突破),著名华裔政治家、中华民国前副总统、中國國民黨前主席连战,著名法学家梅汝璈,著名医学家吴阶平,著名物理学家叶企孙,著名气象学家郭晓岚,保釣運動健將林孝信教授,世界银行前高级副总裁林毅夫等等亦毕业于芝加哥大学或曾在芝大学习。诺贝尔化学奖得主李远哲、数学家陈省身等也曾长期在芝加哥大学任教。.

新!!: 透射电子显微镜和芝加哥大学 · 查看更多 »

隔膜泵

膜泵(或Membrane pump),又称为气动隔膜泵(pneumatic diaphragm pump)或气动双隔膜泵(Air Operated Double Diaphragm Pump)。往复泵的一种,用弹性薄膜,耐腐蚀橡胶或弹性金属片将泵分隔成互不相通的两部分,分别是被输送液体和活柱存在的区域。这样,活柱不与输送的液体接触。活柱的往复运动通过同侧的介质传递到隔膜上,使隔膜亦作往复运动,从而实现被输送液体经球形活门吸入和排出。 隔膜泵内与被输送液体接触的唯一部件就是球形活门,这易于制成不受液体侵害的形式。在工业生产中,隔膜泵主要用于输送腐蚀性液体或含有固体悬浮物的液体。 主要有三種類型的隔膜泵: 那些在其中的隔膜密封,其一邊在被泵送的流體,而另一個在空氣或液壓流體。膜片彎曲,使泵室的容積增大和減小。甲對非止逆閥防止流體的反向流動。 那些採用容積的容積,其中膜片的原動機是電-機,通過曲柄或齒輪傳動馬達驅動器工作時,或純粹機械的,如用操縱桿或手柄。這種方法通過簡單的機械動作彎曲的膜片,與膜片的一側是開放的空氣中。 那些採用一個或多個非密封隔膜與被泵送兩側的流體。隔膜(次)再次被彎曲,從而使體積發生變化。 當任一類型的泵的腔室的容積增大(膜片向上移動)時,壓力降低,流體被吸入到室中。當腔室壓力後從降低體積(隔膜向下移動)的增加,以前在繪製的流體被壓出。最後,膜片向上移動再次提請流體進入腔室,從而完成循環。此操作類似於在一個氣缸的內燃機。.

新!!: 透射电子显微镜和隔膜泵 · 查看更多 »

衍射

--(diffraction),又稱--,是指波遇到障碍物时偏离原来直线传播的物理现象。 在古典物理学中,波在穿过狭缝、小孔或圆盘之类的障碍物后會发生不同程度的弯散传播。假設將一个障碍物置放在光源和观察屏之间,則會有光亮区域與陰暗区域出現於观察屏,而且這些区域的边界並不銳利,是一种明暗相间的复杂图样。這现象称为衍射,當波在其传播路径上遇到障碍物时,都有可能發生这种现象。除此之外,当光波穿过折射率不均匀的介质时,或当声波穿过声阻抗不均匀的介质时,也会发生类似的效应。在一定条件下,不仅水波、光波能够产生肉眼可见的衍射现象,其他类型的电磁波(例如X射线和无线电波等)也能够发生衍射。由於原子尺度的實際物體具有類似波的性質,它們也會表现出衍射现象,可以通过量子力学进行研究其性质。 在適當情况下,任何波都具有衍射的固有性质。然而,不同情况中波发生衍射的程度有所不同。如果障碍物具有多个密集分布的孔隙,就会造成较为复杂的衍射强度分布图样。这是因為波的不同部分以不同的路径传播到观察者的位置,发生波叠加而形成的現象。 衍射的形式論还可以用來描述有限波(量度為有限尺寸的波)在自由空间的传播情况。例如,激光束的發散性質、雷达天线的波束形状以及超声波传感器的视野范围都可以利用衍射方程来加以分析。.

新!!: 透射电子显微镜和衍射 · 查看更多 »

西门子公司

西门子股份公司(德語: SIEMENS AG,)是德國的一家跨國企業,其在電機和電子領域是全球業界先驅,並活躍於能源、醫療、工業及基礎建設與城市業務領域。此外,西門子也是美国《财富》杂志2016年评选的的排行榜中的第71名。西門子於1847年由维尔纳·冯·西门子建立,总部位于德國慕尼黑和柏林。西门子股份公司是在法兰克福证券交易所和纽约证券交易所上市的公司。 西門子目前在全球擁有約405,000名員工,公司業務遍佈190個國家。.

新!!: 透射电子显微镜和西门子公司 · 查看更多 »

质量

在日常生活中的“重量”常常被用來表示“質量”,但是在科学上,这两个词表示物质不同的属性(参见质量对重量)。 在物理上,质量通常指物质在以下的三个实验上证明等价的属性之一:.

新!!: 透射电子显微镜和质量 · 查看更多 »

轨迹球

轨迹球(Trackball)是和鼠标等一样的计算机定点设备的一种。.

新!!: 透射电子显微镜和轨迹球 · 查看更多 »

门阀

#重定向 士族 (中国).

新!!: 透射电子显微镜和门阀 · 查看更多 »

钨(IUPAC名:tungsten ),化学符号:W(Wolfram), 是一種化学元素,原子序数是74,是非常硬、钢灰色至白色的过渡金属。含有钨的矿物有黑钨矿和白钨矿等。钨的物理特征非常强,尤其是熔点非常高,是所有非合金金属中最高的。纯钨主要用在电器和电子设备,它的许多化合物和合金也有很多其它用途(最常见的有灯泡的鎢丝,在X射线管中以及高温合金)。 鎢的最穩定的三種同位素都有輕微的放射性。.

新!!: 透射电子显微镜和钨 · 查看更多 »

里克

里克可以指:.

新!!: 透射电子显微镜和里克 · 查看更多 »

色差

色差是指光学上透镜无法将各种波长的色光都聚焦在同一点上的现象。它的产生是因为透镜对不同波长的色光有不同的折射率(色散现象)。对於波长较长的色光,透镜的折射率较低。在成像上,色差表现为高光区与低光区交界上呈现出带有颜色的“边缘”,这是由于透镜的焦距与折射率有关,从而光谱上的每一种颜色无法聚焦在光轴上的同一点。色差可以是纵向的,由于不同波长的色光的焦距各不相同,从而它们各自聚焦在距离透镜远近不同的点上;色差也可以是横向或平行排列的,由于透镜的放大倍数也与折射率有关,此时它们会各自聚焦在焦平面上不同的位置。.

新!!: 透射电子显微镜和色差 · 查看更多 »

電場

電場是存在于电荷周围能传递电荷与电荷之间相互作用的物理场。在电荷周围总有电场存在;同时电场对场中其他电荷发生力的作用。观察者相对于电荷静止时所观察到的场称为静电场。如果电荷相对于观察者运动,则除静电场外,还有磁场出现。除了电荷以外,隨著時間流易而变化的磁场也可以生成电场,這種電場叫做涡旋电场或感应电场。迈克尔·法拉第最先提出電場的概念。.

新!!: 透射电子显微镜和電場 · 查看更多 »

透磁合金

透磁合金 ,又称坡莫合金是镍铁的磁合金。通常指,20%铁和80%镍的合金。透磁合金有高磁导率,低矫顽力,接近0的磁力控制,和明显的各向异性的磁阻效应。当不定的压力在薄膜上很可能对电磁特性引起毁灭性的改变,其低磁力控制则在工业应用上具有决定性的意义。透磁合金的电阻率通常由于强度和所施加磁场的方向的因素,变化范围在5%以内。透磁合金具有典型的等轴晶系晶体结构,其晶格常量约为0.355nm,在临近镍80%集中的区域。 Category:合金 Category:镍合金 Category:磁性合金 Category:铁磁性材料.

新!!: 透射电子显微镜和透磁合金 · 查看更多 »

透镜

本条目介绍的是光學設備,其他領域的透鏡不在此處討論。 透鏡是一種將光線聚合或分散的設備,通常是由一片玻璃構成,但用於其他電磁輻射的類似設備通常也稱為透鏡,例如:由石蠟製成的微波透鏡,用玻璃、树脂或水晶等透明材料制成的放大镜、眼镜等,也都是透镜。 透镜有两类,中间厚边缘薄的叫凸透镜,中间薄边缘厚的叫凹透镜,比球面半径小许多的透镜叫薄透镜,薄透镜的几何中心叫透镜的鏡心。 透镜并不一定是固定形状,使用满足要求的材料来制作可以改变形状的透镜可以提高清晰度,景深,不过通过使用镜头组也能达到相同的效果,就如澳大利亚摄影师吉姆·弗雷泽(Jim Frazier)做的那样,这样做是等效的。如果你有适合形状的壳来封存洁净的可增减的水,那就能做到。.

新!!: 透射电子显微镜和透镜 · 查看更多 »

陰極射線

極射線是在真空管中可以观察到的电子流。真空管是一个被抽成真空的、装有两个电极(一个阳极和一个阴极)的玻璃管。 阴极被加热后,其释放出来的电子会像射线一样飞往阳极。假如阳极后面的玻璃片覆有磷光物质的话,它会发光。阴极与阳极之间的金属板会在磷光玻璃板上留下影子。这说明磷光是由阴极发射出来的粒子打到磷光板上后发出的。这些粒子直线地从阴极飞到阳极,并飞过阳极一段距离。.

新!!: 透射电子显微镜和陰極射線 · 查看更多 »

控制杆

控制杆是一种输入设备,由基座和固定在上面作为枢轴的主控制杆组成,作用是向其控制的设备传递角度或方向信号。现时控制杆主要用来操纵电子游戏,通常有一个或多个按钮,按钮的状态也可被电脑识别。控制杆在应用上最热门的类比产品是现代电子游戏机使用的模拟杆。 控制杆一直是许多飞机,特别是军用喷气式飞机驾驶员座舱内的主要飞行控制器,分为中心杆和侧杆(见中心杆对侧杆) 。 控制杆也用于控制机器,如起重机,卡车,水下机器人和零转弯半径割草机。小型手指控制杆已通过作为小型电子设备的输入装置,如移动电话。.

新!!: 透射电子显微镜和控制杆 · 查看更多 »

恩斯特·鲁斯卡

恩斯特·奥古斯特·弗里德里希·鲁斯卡(Ernst August Friedrich Ruska,),德國物理学家,电子显微镜的发明者,1986年获诺贝尔物理学奖。.

新!!: 透射电子显微镜和恩斯特·鲁斯卡 · 查看更多 »

恩斯特·阿贝

恩斯特·卡爾·阿贝(Ernst Karl Abbe,)德国物理学家、光学家、企業家。.

新!!: 透射电子显微镜和恩斯特·阿贝 · 查看更多 »

材料科学

-- 材料科学,又名為材料工程,涉及物质的性质及其在各个科学和工程學领域的整合应用,是一个研究材料的制备或加工工艺、材料的微观结构与材料宏观性能三者之间的相互关系的跨领域學科。涉及的理论包括固体物理学,材料化学,应用物理和化学,以及化学工程,机械工程,土木工程和电机工程。与电子工程结合,则衍生出电子材料,与机械结合则衍生出结构材料,与生物学结合则衍生出生物材料等等。随着近年来媒体将注意力大量集中在纳米科学上,材料科学在科學與工程學領域越來越廣為人知。它也是鑑識科學和破壞分析中的一个重要组成部分,以後者為例,它是分析各種飛航意外的關鍵。今日許多科技上的問題受限於材料能夠容許的極限,也因此,在此領域的突破在未來科技具有指標性的影響。材料科学有着广泛的应用前景,。.

新!!: 透射电子显微镜和材料科学 · 查看更多 »

步进电机

#重定向 步進馬達.

新!!: 透射电子显微镜和步进电机 · 查看更多 »

比尔-朗伯定律

比尔-朗伯定律(Beer–Lambert law),又称比尔定律或比耳定律(Beer's law)、朗伯-比尔定律、布格-朗伯-比尔定律(Bouguer–Lambert–Beer law),是光吸收的基本定律,适用于所有的电磁辐射和所有的吸光物质,包括气体、固体、液体、分子、原子和离子。比尔-朗伯定律是吸光光度法、比色分析法和光电比色法的定量基础。.

新!!: 透射电子显微镜和比尔-朗伯定律 · 查看更多 »

波動角度

波動角度(英語:Angle of incidence),這裏集合了有關波動的角度的定義。.

新!!: 透射电子显微镜和波動角度 · 查看更多 »

波长

波长是一個物理學的名詞,指在某一固定的頻率裡,沿着波的传播方向、在波的图形中,離平衡位置的「位移」與「時間」皆相同的两个质点之间的最短距离。在物理學,波長普遍使用希臘字母λ來表示。.

新!!: 透射电子显微镜和波长 · 查看更多 »

洛伦兹力

在電動力學裏,勞侖茲力(Lorentz force)是運動於電磁場的帶電粒子所感受到的作用力。勞侖茲力是因荷蘭物理學者亨德里克·勞侖茲而命名。根據勞侖茲力定律,勞侖茲力可以用方程式,稱為勞侖茲力方程式,表達為 其中,\mathbf是勞侖茲力,q是帶電粒子的電荷量,\mathbf是電場强度,\mathbf是帶電粒子的速度,\mathbf是磁感应强度。 勞侖茲力定律是一個基本公理,不是從別的理論推導出來的定律,而是由多次重複完成的實驗所得到的同樣的結果。 感受到電場的作用,正電荷會朝著電場的方向加速;但是感受到磁場的作用,按照右手定則,正電荷會朝著垂直於速度\mathbf和磁場\mathbf的方向彎曲(詳細地說,假設右手的大拇指與\mathbf同向,食指與\mathbf同向,則中指會指向\mathbf的方向)。 勞侖茲力方程式的q\mathbf項目是電場力項目,q\mathbf \times \mathbf項目是磁場力項目。處於磁場內的載電導線感受到的磁場力就是這勞侖茲力的磁場力分量。 勞侖茲力方程式的积分形式为 其中,\mathbb是積分的體積,\rho是電荷密度,\mathbf是電流密度,\mathrm\tau是微小體元素。 勞侖茲力密度\mathbf是單位體積的勞侖茲力,表達為:.

新!!: 透射电子显微镜和洛伦兹力 · 查看更多 »

振幅

振幅是在波动或振动中距离平衡位置或静止位置的最大位移。符号A,单位米。振幅屬於標量,振幅永为非負值(≥0)。 在下图中,位移“y”表示波的振幅。 系統振動中最大動態位移,稱為振幅。 概念辨析(振幅≠幅度):.

新!!: 透射电子显微镜和振幅 · 查看更多 »

测微计

#重定向 千分尺.

新!!: 透射电子显微镜和测微计 · 查看更多 »

散射

傳播中的輻射,像光波、音波、電磁波、或粒子,在通過局部性的位勢時,由於受到位勢的作用,必須改變其直線軌跡,這物理過程,稱為散射。這局部性位勢稱為散射體,或散射中心。局部性位勢各式各樣的種類,無法盡列;例如,粒子、氣泡、液珠、液體密度漲落、晶體缺陷、粗糙表面等等。在傳播的波動或移動的粒子的路徑中,這些特別的局部性位勢所造成的效應,都可以放在散射理論(scattering theory)的框架裏來描述。.

新!!: 透射电子显微镜和散射 · 查看更多 »

散光

散光(又稱乱视,小儿散光,散光眼,Astigmatism)散光是眼睛的一种屈光不正常表现,与角膜的弧度有关。.

新!!: 透射电子显微镜和散光 · 查看更多 »

扫描电子显微镜

扫描电子显微镜(Scanning Electron Microscope,缩写为SEM),简称扫描电镜,是一种电子显微镜,其通过用聚焦电子束扫描样品的表面来产生样品表面的图像。 电子与样品中的原子相互作用,产生包含关于样品的表面测绘学形貌和组成的信息的各种信号。电子束通常以图案扫描,并且光束的位置与检测到的信号组合以产生图像。扫描电子显微镜可以实现分辨率优于1纳米。样品可以在高真空,低真空,湿条件(用环境扫描电子显微镜)以及宽范围的低温或高温下观察到。 最常见的扫描电子显微镜模式是检测由电子束激发的原子发射的二次电子(secondary electron)。可以检测的二次电子的数量,取决于样品测绘学形貌,以及取决于其他因素。通过扫描样品并使用特殊检测器收集被发射的二次电子,创建了显示表面的形貌的图像。它还可能产生样品表面的高分辨率图像,且图像呈三维,鉴定样品的表面结构。.

新!!: 透射电子显微镜和扫描电子显微镜 · 查看更多 »

普朗克常数

普朗克常數記為h,是一個物理常數,用以描述量子大小。在量子力學中佔有重要的角色,馬克斯·普朗克在1900年研究物体热辐射的规律时发现,只有假定电磁波的发射和吸收不是连续的,而是一份一份地进行的,计算的结果才能和实验结果是相符。这样的一份能量叫做能量子,每一份能量子等于普朗克常數乘以辐射电磁波的频率。这关系称为普朗克关系,用方程式表示普朗克关系式: 其中,E 是能量,h 是普朗克常數,\nu 是频率。 普朗克常數的值約為: 普朗克常數的量綱為能量乘上時間,也可視為動量乘上位移量: (牛頓(N)·公尺(m)·秒(s))為角動量單位.

新!!: 透射电子显微镜和普朗克常数 · 查看更多 »

晶体缺陷

晶体缺陷(crystallographic defect)是指晶体结构中周期性的排列规律被打破的情况。P.

新!!: 透射电子显微镜和晶体缺陷 · 查看更多 »

晶粒

晶粒(cystallite、crystal grain)是指微小的或微米尺度的晶体。多晶体由许多不同大小和取向的晶粒组成,視不同之成長與加工過程,多晶體中的晶粒取向可能都均勻地隨機分佈形成隨機織構,也可能表現出多數晶粒都朝某一特定取向,而形成特定的擇優取向。多晶体内晶粒之间的接触区域称为晶界。粉粒(powder grain)与晶粒的意义不同,它可指由许多晶粒组成的多晶体粉末颗粒。 晶粒度是评价晶粒大小(crystallite size、grain size)的度量。.

新!!: 透射电子显微镜和晶粒 · 查看更多 »

重定向到这里:

TEM穿透式電子顯微鏡透射电镜透射電子顯微鏡透射電鏡

传出传入
嘿!我们在Facebook上吧! »