目录
实数
实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.
查看 希羅平均數和实数
希羅
#重定向 亚历山大港的希罗.
查看 希羅平均數和希羅
平均数
平均数(Mean,或稱平均值)是统计中的一个重要概念。为集中趋势的最常用测度值,目的是确定一组数据的均衡点。 算术平均数(或简称平均數)是一组样本 x_1, x_2, \ldots, x_n 的和除以样本的数量。其通常记作 \bar: 例如, 4, 36, 45, 50, 75 这组数的算术平均数是: 在统计中算术平均数常用于表示统计对象的一般水平,它是描述数据集中程度的一个统计量。我们既可以用它来反映一组数据的一般情况,也可以用它进行不同组数据的比较,以看出组与组之间的差别。用平均数表示一组数据的情况,有直观、简明的特点,所以在日常生活中经常用到,如平均的速度、平均的身高、平均的产量、平均的成绩......
查看 希羅平均數和平均数
圆台
圓台,又稱截頂圓錐、圓亭,是几何学中研究的一类三维形体,指一个圆锥被平行于它的底面的一个平面所截後,截面与底面之间的几何形体。截面也称为圆台的上底面,原来圆锥的底面称为下底面。随着圆锥形状不同,圆台的称呼也不相同。一般说到圆台都是指正圆台,也就是指正圆锥截出的圆台。正圆台和圆形有相同的对称结构。以下除非另作注明,“圆台”都指正圆台。.
查看 希羅平均數和圆台
几何平均数
几何平均数(Geometric mean),是求一组数值的平均数的方法中的一种。适用于对比率数据的平均,并主要用于计算数据平均增长(变化)率。 其计算公式为:.
查看 希羅平均數和几何平均数
算术平均数
算术平均数(Arithmetic mean)是表征数据集中趋势的一个统计指标。 它是一组数据之和,除以这组数据个数/項数。 算术平均数在统计学上的优点,就是它较中位数、众数更少受到随机因素影响, 缺点是它更容易受到极端值影响。 计算公式为: 在统计学中,对样本的平均值用 \bar 表示,对母体数据的平均值用 \mu 表示。 樣本平均數可作為母體平均數的一個不偏估計式.
查看 希羅平均數和算术平均数
棱台
棱台是几何学中研究的一类多面体,指一个棱锥被平行于它的底面的一个平面所截後,截面与底面之间的几何形体。截面也称为棱台的上底面,原来棱锥的底面称为下底面。随着棱锥形状不同,棱台的称呼也不相同,依底面多边形而定,例如底面是正方形的棱台称为方棱台,底面为三角形的棱台称为三棱台,底面为五边形的棱台称为五棱台等等。棱台是平截头体的一类,也是更广义的拟柱体的一种。 从棱锥的定义可以推知,一个以边形为底面的棱台,一共有2个顶点,+2个面以及3条边。棱锥的对偶多面体是双锥。棱锥的对称性取决于原来棱锥。如果原来的棱锥是正棱锥,那么棱台和正多边形有相同的对称结构(同构的对称群)。.
查看 希羅平均數和棱台
另见
平均数
- 三均值
- 中位數
- 众数 (数学)
- 几何-调和平均数
- 几何中心
- 几何平均数
- 切萨罗求和
- 加權平均數
- 對數平均
- 希羅平均數
- 幂平均
- 平均
- 平均数
- 平方平均数
- 毕达哥拉斯平均
- 算术-几何平均值不等式
- 算术-几何平均数
- 算术平均数
- 裁剪平均值
- 调和平均数
亦称为 希罗平均。