目录
22 关系: 向量,奧古斯丁·路易·柯西,实数,对数,不等式,平均数不等式,幂平均,二项式定理,伯努利不等式,当且仅当,几何平均数,凹函数,琴生不等式,科林·麦克劳林,算术平均数,黎曼积分,自然数,英国,排序不等式,杨氏不等式,数学家,数学归纳法。
向量
向量(vector,物理、工程等也称作--)是数学、物理学和工程科学等多个自然科學中的基本概念,指一个同时具有大小和方向,且满足平行四边形法则的几何對象。一般地,同时满足具有大小和方向两个性质的几何对象即可认为是向量(特别地,电流属既有大小、又有正负方向的量,但由于其运算不满足平行四边形法则,公认为其不属于向量)。向量常常在以符号加箭头标示以区别于其它量。与向量相对的概念称标量或数量,即只有大小、绝大多数情况下没有方向(电流是特例)、不满足平行四边形法则的量。.
奧古斯丁·路易·柯西
奧古斯丁·路易·柯西(法语:Augustin Louis Cauchy,,法语发音),法國數學家。.
实数
实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.
对数
在数学中,真数 x(对于底数 )的对数是 y 的指数 y,使得 。底数 的值一定不能是1或0(在扩展到复数的复对数情况下不能是1的方根),典型的是、 10或2。数x(对于底数β)的对数通常写为 稱作為以β為底x的對數。 当x和β进一步限制为正实数的时候,对数是1个唯一的实数。 例如,因为 我们可以得出 用日常语言说,以3为底81的对数是4。.
不等式
不等式是數學名詞,是指表示二個量之間不等的敘述。一般常會表示成二個表示式表示要探討的量,中間再加上不等關係的符號,表示兩者的關係。以下是一些不等式的例子: 有些作者認為不等式只能用來表示中間有出現不等號≠的關係式.
平均数不等式
平均数不等式,或称平均值不等式、均值不等式,是数学上的一组不等式,也是基本不等式的推广。它是说: 如果x_1, x_2, \ldots, x_n是正數,则 H_n \le G_n \le A_n \le Q_n 其中: H_n.
幂平均
幂平均(power mean)也叫广义平均(generalized mean)或赫尔德平均(Hölder mean),是毕达哥拉斯平均(包含了算术、几何、调和平均)的一种抽象化。.
二项式定理
在初等代數中,二项式定理(Binomial theorem)描述了二项式的幂的代数展开。根据该定理,可以将两个数之和的整数次幂诸如(x + y)n 展开为类似 axbyc 项之和的恒等式,其中b、c均为非负整数且。系数a是依赖于 n 和b的正整数。当某项的指数为0时,通常略去不写。例如: (x+y)^4 \;.
伯努利不等式
數學中的伯努利不等式是說:對任意整數n \ge 0,和任意實數x \ge -1, 如果n \ge 0且是偶數,則不等式對任意實數x成立。 可以看到在n.
当且仅当
当且仅当(If and only if)(中国大陆又称作当且--仅当,臺灣又称作若且--唯若),在--邏輯中,逻辑算符反互斥或閘(exclusive or)是对两个运算元的一种邏輯分析类型,符号为XNOR或ENOR或\Leftrightarrow。与一般的邏輯或非NOR不同,當兩兩數值相同為是,而數值不同時為否。在数学、哲学、逻辑学以及其他一些技术性领域中被用来表示“在,并且仅仅在这些条件成立的时候”之意,在英语中的对应标记为iff。“A当且仅当B”其他等价的说法有“当且仅当A則B”;“A是B的充分必要条件(充要條件)”。 一般而言,當我們看到“A当且仅当B”,我們可以知道“如果A成立時,則B一定成立;如果B成立時,則A也一定成立”;“如果A不成立時,則B一定不成立;如果B不成立時,則A也一定不成立”。.
几何平均数
几何平均数(Geometric mean),是求一组数值的平均数的方法中的一种。适用于对比率数据的平均,并主要用于计算数据平均增长(变化)率。 其计算公式为:.
凹函数
在數學當中,凹函數是和凸函数相對的函數。.
琴生不等式
#重定向 延森不等式.
科林·麦克劳林
科林·麥克勞林(Colin Maclaurin,),蘇格蘭數學家。.
算术平均数
算术平均数(Arithmetic mean)是表征数据集中趋势的一个统计指标。 它是一组数据之和,除以这组数据个数/項数。 算术平均数在统计学上的优点,就是它较中位数、众数更少受到随机因素影响, 缺点是它更容易受到极端值影响。 计算公式为: 在统计学中,对样本的平均值用 \bar 表示,对母体数据的平均值用 \mu 表示。 樣本平均數可作為母體平均數的一個不偏估計式.
黎曼积分
在实分析中,由黎曼创立的黎曼积分(Riemann integral)首次对函数在给定区间上的积分给出了一个精确定义。黎曼积分在技术上的某些不足之处可由后来的黎曼-斯蒂尔杰斯积分和勒贝格积分得到修补。.
自然数
数学中,自然数指用于计数(如「桌子上有三个苹果」)和定序(如「国内第三大城市」)的数字。用于计数时称之为基数,用于定序时称之为序数。 自然数的定义不一,可以指正整数 (1, 2, 3, 4, \ldots),亦可以指非负整数 (0, 1, 2, 3, 4, \ldots)。前者多在数论中使用,后者多在集合论和计算机科学中使用,也是 标准中所采用的定义。 数学家一般以\mathbb代表以自然数组成的集合。自然数集是一個可數的,無上界的無窮集合。.
英国
大不列颠及北爱尔兰联合王国(United Kingdom of Great Britain and Northern Ireland),简称联合王国(United Kingdom,缩写作 UK)或不列颠(Britain),中文通称英国(中文世界早期亦称英联王国),是本土位於西歐並具有海外領地的主權國家,英國為世界七大國之一,位于欧洲大陆西北面,由大不列颠岛、爱尔兰岛东北部分及一系列较小岛屿共同组成。英国和另一国家唯一的陆上国境线位于北爱尔兰,和爱尔兰共和国相邻。英国由大西洋所环绕,东为北海,南为英吉利海峡,西南偏南为凯尔特海,同爱尔兰隔爱尔兰海相望。该国总面积达,为世界面积第80大的主权国家及欧洲面积第11大的主权国家,人口6510万,为全球第21名及歐洲第3名。 英国为君主立宪国家,采用议会制进行管辖。其首都伦敦为全球城市A++级别和国际金融中心,大都会区人口达1380万,为欧洲第三大和欧盟第一大。现在位英国君主为女王伊丽莎白二世,1952年2月6日即位。英国由四个构成国组成,分别为英格兰、苏格兰、威尔士和北爱尔兰,其中后三者在权力下放体系之下各自拥有一定的权力。三地首府分别为爱丁堡、加的夫和贝尔法斯特。附近的马恩岛、根西行政区及泽西行政区并非联合王国的一部分,而为王冠属地,英国政府负责其国防及外交事务。 英国的构成国之间的关系在历史上经历了一系列的发展。英格兰王国通过1535年和1542年的《联合法令》将威尔士纳入其领土范围。1707年的条约使英格兰和苏格兰王国联合成为大不列颠王国,而1801年后者则进一步同爱尔兰王国联合成为大不列颠及爱尔兰联合王国。1922年,爱尔兰的六分之五脱离联邦,由此便有了今日的大不列颠及北爱尔兰联合王国。大不列颠及北爱尔兰联合王国亦有14块海外领地,为往日帝国的遗留部分。大英帝国在1921年达到其巅峰,拥有全球22%的领土,是有史以来面积最大的帝国。英国在语言、文化和法律体系上对其前殖民地保留了一定的影响力,因而吸引許多以前英聯邦的移民前來居住。 英国为发达国家,以名义GDP为量度为世界第五大经济体,以购买力平价为量度为世界第九大经济体。英国同时还是世界首个工业化国家,在1815年-1914年为世界第一强国,现今仍是強國之一,在全球范围内的经济、文化、军事、科技和政治上有显著影响力。英国为国际公认的有核国家,其军事开支位列全球第五 (IISS)。自1946年以来,英国即为联合国安全理事会常任理事国,而自1973年以来即为欧洲联盟(EU)及其前身欧洲经济共同体(EEC)的成员国,同时还为英联邦、欧洲委员会、七国财长峰会、七国集团、二十国集团、北大西洋公约组织、经济合作与发展组织和世界贸易组织成员国。2016年英國脫離歐盟公投中,英国民众决定脱离欧盟,但因間接影響全球經濟,所以並未得到多數國家支持。.
排序不等式
排序不等式是數學上的一條不等式。它可以推導出很多有名的不等式,例如算術幾何平均不等式(簡稱算幾不等式),柯西不等式,和切比雪夫總和不等式。它是說: 如果 是兩組實數。而 是x_1, \ldots, x_n的一個排列。排序不等式指出 以文字可以說成是順序和不小於亂序和,亂序和不小於逆序和。與很多不等式不同,排序不等式不需限定x_i, \, y_i的符號。.
杨氏不等式
在数学上,Young's不等式,指出:假设 a, b, p 和q 是正实数 ,且有1/p + 1/q.
数学家
数学家是指一群對數學有深入了解的的人士,將其知識運用於其工作上(特別是解決數學問題)。數學家專注於數、數據、邏輯、集合、結構、空間、變化。 專注於解決純數學(基础数学)領域以外的問題的數學家稱為應用數學家,他們運用他們的特殊數學知識與專業的方法解決許多在科學領域的顯著問題。因為專注於廣泛領域的問題、理論系統、定點結構。應用數學家經常研究與制定數學模型.
数学归纳法
数学归纳法(Mathematical Induction、MI、ID)是一种数学证明方法,通常被用于证明某个给定命题在整个(或者局部)自然数范围内成立。除了自然数以外,广义上的数学归纳法也可以用于证明一般良基结构,例如:集合论中的树。这种广义的数学归纳法应用于数学逻辑和计算机科学领域,称作结构归纳法。 虽然数学归纳法名字中有“归纳”,但是数学归纳法并非不严谨的归纳推理法,它属于完全严谨的演绎推理法。事實上,所有數學證明都是演繹法。.
亦称为 基本不等式,算術幾何平均不等式。