徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

多重积分

指数 多重积分

多重积分是定积分的一类,它将定积分扩展到多元函数(多变量的函数),例如求f(x,y)或者f(x,y,z)类型的多元函数的积分。.

48 关系: 力学偏导数半径博雷尔测度单纯形反常積分定义域实变函数论富比尼定理密度不定积分不等式常數函數平面体积体积形式圓柱坐標系圆柱体函数勾股定理矩形球极坐标系积分笛卡尔坐标系电磁学物理学面积被积函数高斯散度定理變數麦克斯韦方程组黎曼积分轉動慣量边界長方體電場雅可比矩阵极坐标系极限条件收敛格林公式棱锥欧几里得空间有界函数有界集合测度斯托克斯定理

力学

力学是物理学的一个分支,主要研究能量和力以及它们与物体的平衡、变形或运动的关系。.

新!!: 多重积分和力学 · 查看更多 »

偏导数

在数学中,一个多变量的函数的偏导数是它关于其中一个变量的导数,而保持其他变量恒定(相对于全导数,在其中所有变量都允许变化)。偏导数在向量分析和微分几何中是很有用的。 函数f关于变量x的偏导数写为f_x^或\frac。偏导数符号\partial是全导数符号 d的变体,这个符号是阿德里安-马里·勒让德引入的,并在雅可比的重新引入后得到普遍接受。.

新!!: 多重积分和偏导数 · 查看更多 »

半径

在一个圆中,从圆心到圆周上任何一点所连成的线段称为这个圆的半径,同时,这个线段的长度(也就是圆心到圆上任意一个点的距离)也被称为半径;在数学裡常以r来表示作为长度的半径。.

新!!: 多重积分和半径 · 查看更多 »

博雷尔测度

博雷爾代數是實數上包含所有區間的最小σ代數,其中的元素稱作博雷爾集;博雷爾測度(Borel measure)是σ代數上對區間給出值b-a的測度。 博雷爾測度並不完備,因此習慣使用勒貝格測度:每個博雷爾可測集都是勒貝格可測的,並且它們的測度值吻合。 在抽象測度理論中,設E為局部緊豪斯多夫空间。E上的一個博雷爾測度是 E的博雷爾代數\mathfrak(X) 上的任何一個測度μ。.

新!!: 多重积分和博雷尔测度 · 查看更多 »

单纯形

几何学上,单纯形或者n-单纯形是和三角形类似的n维几何体。精确的讲,单纯形是某个n维以上的欧几里得空间中的(n+1)个仿射无关(也就是没有m-1维平面包含m+1个点;这样的点集被称为处于一般位置)的点的集合的凸包。 例如,0-单纯形就是点,1-单纯形就是线段,2-单纯形就是三角形,3-单纯形就是四面体,而4-单纯形是一个五胞体(每种情况都包含内部)。 正单纯形是同时也是正多胞形的单纯形。正n-单纯形可以从正(n − 1)-单纯形通过将一个新顶点用同样的边长连接到所有旧顶点构造。.

新!!: 多重积分和单纯形 · 查看更多 »

反常積分

反常积分又叫广义积分(“广义积分”为较早教科书的称呼,现在中国大陆已弃用),是对普通定积分的推广,指含有无穷上限/下限,或者被积函数含有瑕点的积分,前者称为无穷限广义积分,后者称为瑕积分(又叫无界函数的反常积分)。.

新!!: 多重积分和反常積分 · 查看更多 »

定义域

定义域(Domain),是函数自变量所有可取值的集合。给定函数f:A\rightarrow B,其中A被称为是f的定义域,记作D_。f映射到陪域中的所有值的集合称为f的值域,记作f(A)或R_。 例如,函数f(x).

新!!: 多重积分和定义域 · 查看更多 »

实变函数论

實分析或實數分析是處理實數及實函數的數學分析。專門實數函數及數列的解析特性,包括實數數列的極限,實函數的微分及積分、連續性,光滑性以及其他相關性質。 實分析常以基礎集合論,函數概念定義等等開始。.

新!!: 多重积分和实变函数论 · 查看更多 »

富比尼定理

富比尼定理(Fubini's theorem)是数学分析中有关重积分的一个定理,以数学家圭多·富比尼命名。富比尼定理给出了使用逐次积分的方法计算双重积分的条件。在这些条件下,不仅能够用逐次积分计算双重积分,而且交换逐次积分的顺序时,积分结果不变。.

新!!: 多重积分和富比尼定理 · 查看更多 »

密度

3 | symbols.

新!!: 多重积分和密度 · 查看更多 »

不定积分

在微积分中,一个函数f.

新!!: 多重积分和不定积分 · 查看更多 »

不等式

不等式是數學名詞,是指表示二個量之間不等的敘述。一般常會表示成二個表示式表示要探討的量,中間再加上不等關係的符號,表示兩者的關係。以下是一些不等式的例子: 有些作者認為不等式只能用來表示中間有出現不等號≠的關係式.

新!!: 多重积分和不等式 · 查看更多 »

常數函數

在数学中,常数函数(也称常值函数)是指值不发生改变(即是常数)的函数。例如,我们有函数f(x).

新!!: 多重积分和常數函數 · 查看更多 »

平面

数学上,一个平面(plane)就是基本的二维对象。直观的讲,它可以视为一个平坦的拥有无穷大面积的纸。多数几何、三角学和制图的基本工作都在二维进行,或者说,在平面上进行。 给定一个平面,可以引入一个直角坐标系以便在平面上用两个数字唯一的标示一个点,这两个数字也就是它的坐标。 在三维x-y-z坐标系中,可以将平面定义为一个方程的集: 其中a, b, c和d是实数,使得a, b, c不全为0。或者,一个平面也可以参数化的表述,作为所有具有u + s v + t w形式的点的集合,其中s和t取遍所有实数,而u, v 和w是给定用于定义平面的向量。 平面由如下组合的任何一个唯一确定.

新!!: 多重积分和平面 · 查看更多 »

体积

積(Volume)是物件佔有多少空間的量。體積的國際單位制是立方米。一件固體物件的體積是一個數值用以形容該物件在空間所佔有的空間。一維空間物件(如線)及二維空間物件(如正方形)在三維空間中均是零體積的。體積是物件佔空間的大小。.

新!!: 多重积分和体积 · 查看更多 »

体积形式

数学中,体积形式提供了函数在不同坐标系(比如球坐标和圆柱坐标)下对体积积分的一种工具。更一般地,一个体积元是流形上一个测度。 在一个定向n-维流形上,体积元典型地由体积形式生成,所谓体积元是一个处处非零的n-阶微分形式。一个流形具有体积形式当且仅当它是可定向的,而可定向流形有无穷多个体积形式(细节见下)。 有一个推广的伪体积形式概念,对无论可否定向的流形都存在。 许多类型的流形有典范的(伪)体积形式,因为它们有额外的结构保证可选取一个更好的体积形式。在复情形,一个带有全纯体积形式的凯勒流形是卡拉比-丘流形。.

新!!: 多重积分和体积形式 · 查看更多 »

圓柱坐標系

圓柱坐標系(cylindrical coordinate system)是一種三維坐標系統。它是二維極坐標系往 z-軸的延伸。添加的第三個坐標 z 專門用來表示 P 點離 xy-平面的高低。按照國際標準化組織建立的約定 (ISO 31-11) ,徑向距離、方位角、高度,分別標記為 (\rho,\ \phi,\ z) 。 如圖右,P 點的圓柱坐標是 (\rho,\ \phi,\ z) 。.

新!!: 多重积分和圓柱坐標系 · 查看更多 »

圆柱体

数学上,圆柱(古稱圓堡壔、圓囷,英語:cylinder)是一个二次曲面,也就是说,一个三维曲面,满足以下直角坐标系中的方程: 这个方程是用于椭圆柱的,是对于普通圆柱(a.

新!!: 多重积分和圆柱体 · 查看更多 »

函数

函數在數學中為兩集合間的一種對應關係:輸入值集合中的每項元素皆能對應唯一一項輸出值集合中的元素。例如實數x對應到其平方x2的關係就是一個函數,若以3作為此函數的輸入值,所得的輸出值便是9。 為方便起見,一般做法是以符號f,g,h等等來指代一個函數。若函數f以x作為輸入值,則其輸出值一般寫作f(x),讀作f of x。上述的平方函數關係寫成數學式記為f(x).

新!!: 多重积分和函数 · 查看更多 »

勾股定理

氏定理(Pythagorean theorem)(希腊语:Πυθαγόρειο θεώρημα)又称商高定理、畢達哥拉斯定理、--、百牛定理,是平面几何中一个基本而重要的定理。勾股定理说明,平面上的直角三角形的两条直角边的长度(古称勾长、股长)的平方和等于斜边长(古称弦长)的平方。反之,若平面上三角形中两边长的平方和等于第三边边长的平方,则它是直角三角形(直角所对的边是第三边)。 勾股定理是人类早期发现并证明的重要数学定理之一。 据《周髀算經》中记述,公元前一千多年周公与商高论数的对话中,商高就以三四五3个特定数为例详细解释了勾股定理要素,其一,“以为句广三,股修四,径隅五”。其二,“既方其外,半之一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。”首先肯定一个底宽为三,高为四的直角三角形,弦长必定是五。最重要的是紧接着论证了弦长平方必定是两直角边的平方和,确立了直角三角形两条直角边的平方和等于斜边平方的判定原则。其判定方法后世不明其法而被忽略。 此外,《周髀算经》中明确记载了周公后人陈子叙述的勾股定理公式:“若求邪至日者,以日下为勾,日高为股,勾股各自乘,并而开方除之,得邪至日”。 赵爽在《周髀算經注》中将勾股定理表述为“勾股各自乘,并之,为弦实。开方除之,即弦”。 古埃及在公元前2600年的纸莎草就有(3,4,5)这一组勾股数,而古巴比伦泥板涉及的最大的一个勾股数组是(12709,13500,18541)。 有些參考資料提到法国和比利時將勾股定理称为驴桥定理,但驴桥定理就是等邊對等角,是指等腰三角形的二底角相等,非勾股定理。.

新!!: 多重积分和勾股定理 · 查看更多 »

矩形

在几何中,矩形定义为有一个角是直角的平行四边形,即是正方形和长方形。 在四邊形中,四邊相等且四個角是直角的,叫做正方形。 在四邊形中,角是直角,但對邊等長,叫做長方形。 ──歐幾里得《幾何原本》 从这个定义可以得出矩形两条相对的边等长,也就是说矩形是平行四边形。正方形是四個邊都等長的矩形,它的四个边都是等长的。 对于长方形两对相对的边,我们称横边为长,竖边为宽。长方形的面积是长和宽的乘积;用符号表示就是:A.

新!!: 多重积分和矩形 · 查看更多 »

球可以指:.

新!!: 多重积分和球 · 查看更多 »

球极坐标系

#重定向 球座標系.

新!!: 多重积分和球极坐标系 · 查看更多 »

积分

积分是微积分学与数学分析裡的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的正实值函数 f(x), f(x)在一个实数区间 上的定积分 可以理解为在 \textstyle Oxy坐标平面上,由曲线 (x,f(x))、直线x.

新!!: 多重积分和积分 · 查看更多 »

笛卡尔坐标系

在數學裏,笛卡兒坐標系(Cartesian coordinate system),也稱直角坐標系,是一種正交坐標系。參閱圖1,二維的直角坐標系是由兩條相互垂直、相交於原點的數線構成的。在平面內,任何一點的坐標是根據數軸上對應的點的座標設定的。在平面內,任何一點與坐標的對應關係,類似於數軸上點與坐標的對應關係。 採用直角坐標,幾何形狀可以用代數公式明確的表達出來。幾何形狀的每一個點的直角坐標必須遵守這代數公式。例如:直線可以標準式ax+by+c.

新!!: 多重积分和笛卡尔坐标系 · 查看更多 »

电磁学

电磁学(英語:electromagnetism)是研究电磁力(電荷粒子之间的一种物理性相互作用) 的物理学的一个分支。电磁力通常表现为电磁场,如電場、磁場和光。电磁力是自然界中四种基本相互作用之一。其它三种基本相互作用是强相互作用、弱相互作用、引力。 電學與磁學領域密切相關。電磁學可以廣義地包含電學和磁學,但狹義來說是探討電與磁彼此之間相互關係的一門學科。 英文单词electromagnetism是两个希腊语词汇ἢλεκτρον(ēlektron,“琥珀”)和μαγνήτης(magnetic源自"magnítis líthos"(μαγνήτης λίθος),意思是“镁石”,一种铁矿)的合成词。研究电磁现象的科学是用电磁力定义的,有时称作洛伦兹力,是既含有電也含有磁的现象。 电磁力在决定日常生活中大多数物体的内部性质中发挥着主要作用。常见物体的电磁力表现在物体中单个分子之间的分子间作用力的结果中。电子被电磁波力学束缚在原子核周围形成原子,而原子是分子的构成单位。相邻原子的电子之间的相互作用产生化學过程,是由电子间的电磁力与动量之间的相互作用决定的。 电磁场有很多种数学描述。在经典电磁学中,电场用欧姆定律中的電勢与电流描述,磁場与电磁感应和磁化强度相关,而馬克士威方程組描述了由电场和磁场自身以及电荷和电流引起的电场和磁场的产生和交替。 电磁学理论意义,特别是基于“媒介”中的传播的性质(磁导率和电容率)确立的光速,推动了1905年阿尔伯特·爱因斯坦的狭义相对论的发展。 虽然电磁力被认为是四大基本作用力之一,在高能量中弱力和电磁力是统一的。在宇宙的历史中的夸克時期,电弱力分割成电磁力和弱力。.

新!!: 多重积分和电磁学 · 查看更多 »

物理学

物理學(希臘文Φύσις,自然)是研究物質、能量的本質與性質,以及它們彼此之間交互作用的自然科學。由於物質與能量是所有科學研究的必須涉及的基本要素,所以物理學是自然科學中最基礎的學科之一。物理學是一種實驗科學,物理學者從觀測與分析大自然的各種基於物質與能量的現象來找出其中的模式。這些模式(假說)稱為「物理理論」,經得起實驗檢驗的常用物理理論稱為物理定律,直到有一天被證明是有錯誤為止(具可否證性)。物理學是由這些定律精緻地建構而成。物理學是自然科學中最基礎的學科之一。化學、生物學、考古學等等科學學術領域的理論都是建構於這些物理定律。 物理學是最古老的學術之一。物理學、化學、生物學等等原本都歸屬於自然哲學的範疇,直到十七世紀至十九世紀期間,才漸漸地從自然哲學中分別成長為獨立的學術領域。物理學與其它很多跨領域研究有相當的交集,如量子化學、生物物理學等等。物理學的疆界並不是固定不變的,物理學裡的創始突破時常可以用來解釋這些跨領域研究的基礎機制,有時還會開啟嶄新的跨領域研究。 通過創建新理論與發展新科技,物理學對於人類文明有極為顯著的貢獻。例如,由於電磁學的快速發展,電燈、電動機、家用電器等新產品纷纷涌现,人類社會的生活水平也得到大幅提升。由於核子物理學日趨成熟,核能發電已不再是藍圖構想,但其所引致的安全問題也使人們意識到地球環境、生態與人類的脆弱渺小。.

新!!: 多重积分和物理学 · 查看更多 »

面积

面積是一個用作表示一個曲面或平面圖形所佔範圍的量,可看成是長度(一維度量)及體積(三維度量)的二維類比。對三維立體圖形而言,圖形的邊界的面積稱為表面積。 計算各基本平面圖形面積及基本立體圖形的表面積公式早已為古希臘及古中國人所熟知。 面積在近代數學中佔相當重要的角色。面積除與幾何學及微積分有關外,亦與線性代數中的行列式有關。在分析學中,平面的面積通常以勒貝格測度(Lebesgue measure)定義。 我們可以利用公理,將面積定義為一個由平面圖形的集合映射至實數的函數。.

新!!: 多重积分和面积 · 查看更多 »

被积函数

#重定向 积分.

新!!: 多重积分和被积函数 · 查看更多 »

高斯散度定理

斯公式,又称为散度定理、高斯散度定理、高斯-奥斯特罗格拉德斯基公式或高-奥公式,是指在向量分析中,一个把向量场通过曲面的流动(即通量)与曲面内部的向量场的表现联系起来的定理。 更加精确地说,高斯公式说明向量场穿过曲面的通量,等于散度在曲面圍起來的體積上的积分。直观地,所有源点的和减去所有汇点的和,就是流出這区域的淨流量。 高斯公式在工程数学中是一个很重要的结果,特别是静电学和流体力学。 在物理和工程中,散度定理通常运用在三维空间中。然而,它可以推广到任意维数。在一维,它等价于微积分基本定理;在二维,它等价于格林公式。 这个定理是更一般的斯托克斯公式的特殊情形。.

新!!: 多重积分和高斯散度定理 · 查看更多 »

變數

在初等數學裡,變數或變元、元是一個用來表示值的符號,該值可以是隨意的,也可能是未指定或未定的。在代數運算時,將變數當作明確的數值代入運算中,可以於單次運算時解出多個問題。一個典型的例子為一元二次公式,該公式可以解出每個一元二次方程的值,只需要將方程的系數代入公式中的變數即可。 變數這個概念在微積分中非常重要。一般,一個函數y.

新!!: 多重积分和變數 · 查看更多 »

麦克斯韦方程组

#重定向 馬克士威方程組.

新!!: 多重积分和麦克斯韦方程组 · 查看更多 »

黎曼积分

在实分析中,由黎曼创立的黎曼积分(Riemann integral)首次对函数在给定区间上的积分给出了一个精确定义。黎曼积分在技术上的某些不足之处可由后来的黎曼-斯蒂尔杰斯积分和勒贝格积分得到修补。.

新!!: 多重积分和黎曼积分 · 查看更多 »

轉動慣量

在经典力學中,轉動慣量又稱慣性矩(Moment of inertia),通常以I表示,國際單位制為·。轉動慣量是一個物體對於其旋轉運動的慣性大小的量度。一個剛體對於某轉軸的轉動慣量決定了對於這物體繞著這轉軸進行某種角加速度運動所需要施加的力矩。轉動慣量在转动動力學中的角色相當於線性動力學中的質量,描述角動量、角速度、力矩和角加速度等數個量之間的關係。.

新!!: 多重积分和轉動慣量 · 查看更多 »

边界

邊界,亦稱疆界,指用於劃分不同政權所轄區域、領地的地理分界線,進而可標示該區域的範圍。边界与国界不是同义词,例如,深圳与香港之间的界线可称为边界,依法实施边界管理、边防检查、边防禁区等行政措施,但不是国界。.

新!!: 多重积分和边界 · 查看更多 »

長方體

長方體,由六個長方形構成的柱體,鄰接的面的角度都是直角的六面體。 當長方體六面均是相等的正方形,則稱為立方體(正六面體)。.

新!!: 多重积分和長方體 · 查看更多 »

電場

電場是存在于电荷周围能传递电荷与电荷之间相互作用的物理场。在电荷周围总有电场存在;同时电场对场中其他电荷发生力的作用。观察者相对于电荷静止时所观察到的场称为静电场。如果电荷相对于观察者运动,则除静电场外,还有磁场出现。除了电荷以外,隨著時間流易而变化的磁场也可以生成电场,這種電場叫做涡旋电场或感应电场。迈克尔·法拉第最先提出電場的概念。.

新!!: 多重积分和電場 · 查看更多 »

雅可比矩阵

在向量分析中,雅可比矩阵是函數的一阶偏导数以一定方式排列成的矩阵,其行列式称为雅可比行列式。 在代数几何中,代数曲线的雅可比行列式表示雅可比簇:伴随该曲线的一个代數群,曲线可以嵌入其中。 它们全部都以数学家卡爾·雅可比命名。.

新!!: 多重积分和雅可比矩阵 · 查看更多 »

极坐标系

在数学中,极坐标系(Polar coordinate system)是一个二维坐标系统。该坐标系统中任意位置可由一个夹角和一段相对原点—极点的距离来表示。极坐标系的应用领域十分广泛,包括数学、物理、工程、航海、航空以及机器人领域。在两点间的关系用夹角和距离很容易表示时,极坐标系便显得尤为有用;而在平面直角坐标系中,这样的关系就只能使用三角函数来表示。对于很多类型的曲线,极坐标方程是最简单的表达形式,甚至对于某些曲线来说,只有极坐标方程能够表示。.

新!!: 多重积分和极坐标系 · 查看更多 »

极限

极限可以指:.

新!!: 多重积分和极限 · 查看更多 »

条件收敛

条件收敛是数学中无穷级数和广义积分的一种性质。收敛但不绝对收敛的无穷级数或广义积分称为条件收敛的。一个积分条件收敛的函数也称为条件可积函数。.

新!!: 多重积分和条件收敛 · 查看更多 »

格林公式

在物理學與數學中,格林定理给出了沿封閉曲線 的線積分與以  為邊界的平面區域  上的雙重積分的联系。格林定理是斯托克斯定理的二維特例,以英國數學家喬治·格林(George Green)命名。.

新!!: 多重积分和格林公式 · 查看更多 »

棱锥

在幾何學上,棱锥又稱角錐,是三维多面体的一種,由多边形各个顶点向它所在的平面外一点依次连直线段而构成。多边形称为棱锥的底面。随着底面形状不同,棱锥的稱呼也不相同,依底面多边形而定,例如底面是正方形的棱锥称为方锥,底面为三角形的棱锥称为三棱锥,底面为五边形的棱锥称为五棱锥等等。 从棱锥的定义可以推知,一个以边形为底面的棱锥,一共有+1个顶点,+1个面以及2条边。棱锥的对偶多面体是同样形状的棱锥。例如一个方锥的对偶形是(倒立的)方锥。 棱锥的对称性取决于底面多边形的形状和多边形以外那个顶点的位置。如果底面的多边形是正多边形,而且另外一个顶点在底面上的投影是多边形的中心,那么棱锥和正多边形有相同的对称结构(同构的对称群)。 棱锥和棱柱、棱台、帐塔一样,都是擬柱體中的一类。.

新!!: 多重积分和棱锥 · 查看更多 »

欧几里得空间

欧几里得几何是在约公元前300年,由古希腊数学家欧几里得建立的角和空间中距离之间联系的法则。欧几里得首先开发了处理平面上二维物体的“平面几何”,他接着分析三维物体的“立体几何”,所有欧几里得的公理被编排到幾何原本。 这些数学空间可以被扩展来应用于任何有限维度,而这种空间叫做 n维欧几里得空间(甚至简称 n 维空间)或有限维实内积空间。 这些数学空间还可被扩展到任意维的情形,称为实内积空间(不一定完备), 希尔伯特空间在高等代数教科书中也被称为欧几里得空间。 为了开发更高维的欧几里得空间,空间的性质必须非常仔细的表达并被扩展到任意维度。 尽管结果的数学非常抽象,它却捕获了我们熟悉的欧几里得空间的根本本质,根本性质是它的平面性。 另存在其他種類的空间,例如球面非欧几里得空间,相对论所描述的四维时空在重力出现的时候也不是欧几里得空间。.

新!!: 多重积分和欧几里得空间 · 查看更多 »

有界函数

定义在集合X上的函数称为有界的,如果它所有的值所组成的集合是有界的。也就是说,存在一个数M>0,使得对于X中的所有x,都有 有时,如果对于X中的所有x,都有f(x)\le A,则函数称为上有界的,A就是它的上界。另一方面,如果对于X中的所有x,都有f(x)\ge B,则函数称为下有界的,B就是它的下界。 一个特例是有界数列,其中X是所有自然数所组成的集合N。所以,一个数列f.

新!!: 多重积分和有界函数 · 查看更多 »

有界集合

在数学分析和有关的数学领域中,一个集合被称为有界的,如果它在某種意义上有有限大小。反过来说,不是有界的集合就叫做无界。.

新!!: 多重积分和有界集合 · 查看更多 »

测度

数学上,测度(Measure)是一个函数,它对一个给定集合的某些子集指定一个数,这个数可以比作大小、体积、概率等等。传统的积分是在区间上进行的,后来人们希望把积分推广到任意的集合上,就发展出测度的概念,它在数学分析和概率论有重要的地位。 测度论是实分析的一个分支,研究对象有σ代数、测度、可测函数和积分,其重要性在概率论和统计学中都有所体现。.

新!!: 多重积分和测度 · 查看更多 »

斯托克斯定理

斯托克斯定理(英文:Stokes' theorem)是微分几何中关于微分形式的积分的定理,因為維數跟空間的不同而有不同的表現形式,它的一般形式包含了向量分析的几个定理,以斯托克斯爵士命名。.

新!!: 多重积分和斯托克斯定理 · 查看更多 »

传出传入
嘿!我们在Facebook上吧! »