我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

基因组进化

指数 基因组进化

基因组进化 是 基因组 的结构(序列)或大小随时间变化过程。 基因组进化的研究涉及多个领域,如基因组的结构分析,基因组寄生虫的研究,基因和古代基因组重复,多倍体和比较基因组学。由于原核生物和真核生物的基因序列是稳定增加的,故基因组进化是一个不断变化和发展的领域,况且这些基因序列可以从科学界和广大公众中获取。.

目录

  1. 45 关系: Alu元件基因基因組原核生物假基因单链DNA反转录外显子丙氨酸代谢微小RNA嗅觉哺乳动物内含子啟動子C值CpG岛突变终止密码子翻译真核生物生理学甘氨酸物种形成遗传密码鳥嘌呤麻风病麻风杆菌转座子转录转录因子胞嘧啶胸腺嘧啶閱讀框架腺嘌呤酵母选择压力染色体接合核糖核酸核鹼基核苷酸比较基因组学氢键有性生殖

  2. 分子演化
  3. 基因組學

Alu元件

Alu元件(Alu element)是人类基因组中一组散在分布的相关序列,每个长约300bp。单个成员的每个末端上有Alu(的缩写)限制酶的切割位点,并由此命名。在灵长类的基因组中存在着大量不同种类的Alu元件。事实上,Alu元件是人类基因组中丰度最高的转座元件。它们源于小胞质7SL RNA,后者是信号识别颗粒的成分之一。靈長總目祖先的基因组中发生了7SL RNA成为Alu元件前体的事件。 Alu的插入与若干遗传性人类疾病及多种癌症有关。 对Alu元件的研究对于阐明人类群体遗传学和包括人類演化在内的灵长类进化来说是十分重要的。.

查看 基因组进化和Alu元件

基因

基因一词来自希腊语,意思为“生”。是指控制生物性状的遗传信息,通常由DNA序列来承载。基因也可视作基本遗传单位,亦即一段具有功能性的DNA或RNA序列。弄清其序列本身的过程叫基因测序。基因的结构由增强子,启动子及蛋白编码序列组成:即基因产物可以是蛋白质(蛋白质编码基因)及RNA,从而控制生物个体的性状(差異)表现。在一个个体当中所有的基因总和叫基因组。在一个物种中所有等位基因的总合叫基因库。在大多数真核生物中,基因分为细胞核基因及线粒体基因,绿色植物的叶绿体也含有独立于细胞核的叶绿体基因组。人類約有一万九千至兩萬两千個基因。 在真核生物中,染色体在体细胞中是成对存在的。每条染色体上都带有一定数量的基因。一个基因在细胞有丝分裂时有两个对列的位点,称为等位基因,分别来自父与母。依所攜帶性状的表現,又可分为显性基因和隐性基因。 一般来说,同一生物体中的每个细胞體都含有相同的基因(除了已经分化的免疫细胞),但并不是每个细胞中的所有基因携带的遗传信息都会被表現出来。控制基因表达的因素分为传统的遗传学(增强子,启动子序列相关)因素及表观遗传学(DNA甲基化,组蛋白乙酰化和脱乙酰化及RNA干扰相关)因素。職司不同功能的細胞或不同的细胞类型中,活化而表現的基因也不同。在某一细胞类型当中所有被表达的基因叫转录组,所有编码蛋白质的基因叫蛋白质组。通过即时聚合酶链式反应或染色质免疫沉淀-测序可得到转录组及蛋白质组的信息。用电脑处理基因序列的学科叫生物信息学。 人类基因组计划(human genome project, HGP)是一项规模宏大,跨国跨学科的生物信息学项目。其宗旨在于测定组成人类染色体(指单倍体)的30亿个碱基对形成的核苷酸序列,从而繪製人类基因组圖譜,並且辨識其载有的基因,达到破译人类遗传信息的最终目的。该计划起始于1990年于2000年完成。.

查看 基因组进化和基因

基因組

在生物学中,一个生物体的基因组是指包含在该生物的DNA(部分病毒是RNA)中的全部遗传信息,又稱基因體(genome)。基因组包括基因和非編碼DNA。1920年,德国汉堡大学植物学教授汉斯·温克勒(Hans Winkler)首次使用基因组这一名词。 更精确地讲,一个生物体的基因组是指一套染色体中的完整的DNA序列。例如,生物个体体细胞中的二倍体由两套染色体组成,其中一套DNA序列就是一个基因组。基因组一词可以特指整套核DNA(例如,核基因组),也可以用于包含自己DNA序列的细胞器基因组,如粒线体基因组或叶绿体基因组。当人们说一个有性生殖物种的基因组正在测序时,通常是指测定一套常染色体和两种性染色体的序列,这样来代表可能的两种性别。即使在只有一种性别的物种中,“一套基因组序列”可能也综合了来自不同个体的染色体。通常使用中,“遗传组成”一词有时在交流中即指某特定个体或物种的基因组。对相关物种全部基因组性质的研究通常被称为基因组学,该学科与遗传学不同,后者一般研究单个或一组基因的性质。.

查看 基因组进化和基因組

原核生物

原核生物(英文:prokaryote)是通常由單一原核细胞形成的生物。相对于真核细胞,原核细胞一般没有细胞内膜、没有核膜包裹的成型细胞核,细胞内无染色体,DNA链未螺旋化,並以游離的形成存在於細胞質中,细胞质内也无任何有膜的细胞器(如粒線體或葉綠體)。有些分類學者將原核生物歸於原核生物域(Prokaryota),但現行的三域系統不採此說,而是將古菌域和細菌域的生物視為原核生物,原核生物本身不作為生物分類的層級。 大部分原核生物为单细胞生物。根据《伯杰氏细菌鉴定手册》,原核生物分为四大类,“有细胞壁的革兰氏阴性真细菌”,“有细胞壁的革兰氏阳性真细菌”,“无细胞壁的真细菌”,“古细菌”。环境中常见的原核生物有细菌、放线菌、古细菌、螺旋体、衣原体、支原体、立克次氏体和蓝细菌等光合性细菌。 Prokaryota亦拼寫為"procaryotes-ß"Campbell, N.

查看 基因组进化和原核生物

假基因

假基因(Pseudogenes,Pseudo-意爲「假」)是一類染色體上的基因片段。假基因的序列通常與對應的基因相似,但至少是喪失了一部分功能,如基因不能表達或編碼的蛋白質沒有功能。 一般認爲,假基因最初是功能對生物生存並非必要的基因。隨着突變的積累,出現編碼區提前出現終止密碼子、等情況,逐漸變爲無功能的假基因。另外,(Copy-number variation, CNV)也可能產生假基因。在拷貝數變異中,1kb(千鹼基對)以上的DNA片段會發生複製或刪除。一部分假基因既沒有內含子,也沒有啓動子(這種啓動子被認爲是通過mRNA的逆轉錄轉移到染色體上的,稱爲「加工」假基因(processed pseudogenes)),但部分假基因仍然擁有一些與正常基因相同的特徵,比如擁有CpG島等啓動子、RNA剪接位點等。 假基因這一名詞是由雅克(Jacq)等人於1977年最早提出的。長期以來生物學家們認爲假基因是沒有功能的垃圾DNA,惟近年來的研究還表明假基因和其他非編碼片段一樣,擁有調控基因表達的功能。假基因的調控作用對維持生物體的生理活動有着重要意義,一部分假基因在某些疾病的發展中也扮演着重要角色。 在進化生物學研究中,假基因序列分析一直是研究者獲知生物進化歷程的手段。假基因一般會擁有一些源基因的特徵。按照進化論的觀點,兩個親緣關係較近的物種擁有同一祖先。對假基因進行序列比對、分析,即可驗證兩物種是否擁有同一祖先,並能計算出兩物種開始分離的時間(結果能精確到百萬年)。.

查看 基因组进化和假基因

单链DNA

DNA分子以两条反向平行的单链DNA通过碱基对之间的氢键相连组成的双螺旋结构存在。单链DNA可以由DNA分子经过热处理或碱处理而产生的。.

查看 基因组进化和单链DNA

反转录

#重定向 逆转录酶.

查看 基因组进化和反转录

外显子

外显子(Exon)是真核生物基因的一部分,它在剪接后仍会被保存下来,并可在蛋白质生物合成过程中被表达为蛋白质。 而内含子则会在剪接过程中被除去。 所有的外显子一同组成了遗传信息,该信息会体现在蛋白质上。 剪接方式并不是唯一的(参看替代剪接),所以外显子只能在成体mRNA中被看出。即使是使用生物信息学方法,要精确预测外显子的位置也是非常困难的。 真核生物的基因,其线性表达被内含子阻断,这就是所谓的断裂基因(split gene),该现象的发现者Richard J.

查看 基因组进化和外显子

丙氨酸

丙氨酸是一種氨基酸,原文為alanine,常簡寫為ala,在氨基酸序列中可簡寫為A。於1879年首度被分離出來。 鳥類和哺乳類可經由食物中的糖分解所得的丙酮酸合成得到丙氨酸,因此對這些動物來說,丙氨酸為非必需氨基酸。但人體必需的氨基酸之一.

查看 基因组进化和丙氨酸

代谢

代谢是生物体维持生命的化学反应总称。这些反应使得生物体能够生长和繁殖、保持它们的结构以及对环境作出反应。代谢通常被分为两类:分解代谢可以对大的分子进行分解以获得能量(如细胞呼吸);合成代谢则可以利用能量来合成细胞中的各个组分,如蛋白质和核酸等。代谢是生物体不断进行物质和能量的交换过程,一旦物质和能量交换停止,生物体的生命就會結束。 代谢中的化学反应可以归纳为代謝途徑,通过一系列酶的作用将一种化学物质转化为另一种化学物质。酶对于代谢反應来说是非常重要的,因为酶可以通过一個熱力學上易於發生的反應來驅動另一個難以進行的反應,使之變得可行;例如,利用ATP的水解所产生的能量来驱动其他化学反应。一个生物体的代谢机制决定了哪些物质对于此生物体是有营养的,而哪些是有毒的。例如,一些原核生物利用硫化氢作为营养物质,但这种气体对于动物来说却是致命的。代谢速度,或者说代谢率,也影响了一个生物体对于食物的需求量。 代谢有一個特点:無論是任何大小的物种,基本代谢途径也是相似的。例如,羧酸,作为柠檬酸循环(又称为“三羧酸循环”)中的最为人们所知的中间产物,存在于所有的生物体,无论是微小的单细胞的细菌还是巨大的多细胞生物如大象。代谢中所存在的这样的相似性很可能是由于相关代谢途径的高效率以及这些途径在进化史早期就出现而形成的结果。.

查看 基因组进化和代谢

微小RNA

#重定向 小分子核糖核酸.

查看 基因组进化和微小RNA

嗅觉

嗅觉是一种由感官感受的知觉。它由两感觉系统参与,即嗅神经系统和鼻三叉神经系统。嗅觉和味觉会整合和互相作用。嗅觉是一种远感,即是说它是通过长距离感受化学刺激的感觉。相比之下,味觉是一种近感。且就感知能力上遠比味覺複雜,人可以辨識約一萬種以上的不同氣味,這些是由7個最基本的味道感知分子所產生的。嗅覺也是動物所主要的感覺之一,許多生物雖然沒有很好的視力,卻有相當敏銳的嗅覺,因為發覺嗅覺對於有機體健康的重要與關聯性,在近年來的醫學上有關嗅覺研究的變得受歡迎。.

查看 基因组进化和嗅觉

哺乳动物

哺乳动物是指脊椎动物亚门下哺乳綱(学名:Mammalia)的一类用肺呼吸空气的温血脊椎动物,因能通过乳腺分泌乳汁来给幼体哺乳而得名。 按照《世界哺乳动物物种》(Mammal Species of the World)一书在2005年的资料,哺乳纲目前有约5676个(2008版的IUCN红皮书为5488个)不同物种,分布在1229个属,153个科和29个目中,约占脊索动物门的10%,地球所有物种的0.4%。啮齿目(老鼠、豪猪、海狸、水豚等)、翼手目(蝙蝠等)和鼩形目(鼩鼱等)是哺乳动物中物种最多的目。 哺乳动物的身体结构复杂,有区别于其他类群的大脑结构、恒温系统和循环系统,具有为后代哺乳、大多数属于胎生、具有毛囊和汗腺等共通的外在特征。 它们外型多样,小至体长30毫米长有翅膀的凹脸蝠,大至体长33米形同鱼类的蓝鲸。它们有很好的环境适应能力,分布在从海洋到高山,从热带到极地的广泛区域。人类也是哺乳动物的一员。.

查看 基因组进化和哺乳动物

内含子

内含子(Intron)是一个基因中非编码DNA片段,它分开相邻的外显子。更精确的定义是:内含子是阻断基因线性表达的序列。DNA上的内含子会被转录到前体RNA中,但RNA上的内含子会在RNA离开细胞核进行转译前被剪除。在成熟mRNA被保留下来的基因部分被称为外显子。真核生物的基因含有外显子和内含子,是前者区别原核生物的特征之一。 内含子可能含有“旧码”,就是在演化过程中丧失功能的基因部分。正因为内含子对转译产物的结构无意义,它比外显子累积有更多的突变。 内含子在选择性剪接扮演重要角色,一个基因可以因此而产生多种不同的蛋白质。归根到底,是在剪接过程中同一段DNA,有时被看作外显子,有时则是内含子。 有一种特殊的内含子,被称作自剪接内含子(核酶),它可以通过自身作用被切除,來离开mRNA。 内含子和外显子的比例因种而异。河鲀的内含子比较少。 但内含子与“垃圾DNA”不同,垃圾DNA亦即那些基因以外的序列,还未被发现有任何功能的DNA,但可能是参与基因调控和选择性剪接的调控。但若内含子对应的mRNA片断没有被除去,可能会发生非常大的突变。如一种植物,科学家抑制了剪切酶的活性而保留了其mRNA中一段内含子。结果,该植物的雌蕊发育不正常。而雄蕊却出现了雌蕊的特征。 “马赛克基因”,就是说编码的DNA片断(外显子)被非编码区域(内含子)隔开,该概念是1977年由Hogness,Mandel和Chambon提出。.

查看 基因组进化和内含子

啟動子

啟動子(promoter)在遺傳學中是指一段能使基因進行轉錄的脱氧核糖核酸(DNA)序列。啟動子可以被RNA聚合酶辨認,並开始轉錄。在核糖核酸(RNA)合成中,啟動子可以和决定转录的开始的转录因子产生相互作用,控制基因表达(转录)的起始时间和表达的程度,包含核心启动子区域和调控区域,就像“开关”,决定基因的活动,繼而控制細胞开始生產哪一種蛋白質。 启动子本身并无编译功能,但它拥有对基因轉譯胺基酸的指挥作用,就像一面旗帜,其核心部分是非编码区上游的RNA聚合酶结合位点,指挥聚合酶的合成,这种酶指导RNA的复制合成。因此该段位的启动子发生突变(变异),将对基因的表达有着毁灭性作用。 完全的啟動子稱為規範序列。.

查看 基因组进化和啟動子

C值

C值(英語:C-value)是指真核生物細胞中,單倍細胞核(受精卵或二倍體體細胞中的一半量)裡所擁有的DNA含量。有時候C值和基因組大小兩個用詞可替換使用,不過對於多倍體而言,C值可能是指同一個細胞核中的兩個基因組。 一个物种单倍体基因组的DNA含量是相对的恒定的,它通常称为该物种DNA的C值。.

查看 基因组进化和C值

CpG岛

CpG島(CpG islands)是指DNA上一個區域,此區域含有大量相聯的胞嘧啶(C)、鳥嘌呤(G),以及使兩者相連的磷酸酯鍵(p)。哺乳類基因中的啟動子上,含有約40%的CpG島(人類約70%)。一般CpG島的長度約300到3000個鹼基對(bp)。 常用的正式定義是指一個至少含有200bp的區域,其中GC所佔比例超過50%,且CpG的觀察值/預測值比例必須高於0.6。此部份的CpG島與基因相連,可用來作為限制酶的辨識位置。 几乎管家基因都含有CpG岛;一般位于基因的5’端区域;大多数CpG岛是未甲基化的;CpG岛中的核小体中H1含量低,其他组蛋白被广泛乙酰化,并具有超敏感位点;未甲基化CpG岛可能说明基因具有潜在活性。.

查看 基因组进化和CpG岛

突变

突变(Mutation,即基因突变)在生物学上的含义,是指细胞中的遗传基因(通常指存在於細胞核中的去氧核糖核酸)发生的改变。它包括单个碱基改变所引起的点突变,或多个碱基的缺失、重复和插入。原因可以是细胞分裂时遗传基因的复制发生错误、或受化学物质、基因毒性、辐射或病毒的影响。 突变通常会导致细胞运作不正常或死亡,甚至可以在较高等生物中引发癌症。但同时,突变也被视为演化的“推动力”:不理想的突变会经天择过程被淘汰,而对物种有利的突变则会被累积下去。中性突變(neutral mutation)对物种沒有影响而逐渐累积,会导致间断平衡。.

查看 基因组进化和突变

终止密码子

在遗传密码中,终止密码子是信使RNA上的一个核苷酸三联体序列,代表翻译的终止。蛋白质由氨基酸生成的特定多肽序列折叠而成。信使RNA中的大部分密码子(来自DNA)负责用来添加一个额外的氨基酸到成长中的,最终会形成蛋白质的肽链上。终止密码子通过绑定释放因子,给这个过程发出终止的信号,最终使大小亚基解离,释放生成的肽链。.

查看 基因组进化和终止密码子

翻译

翻译,是指在准确通顺的基础上,把一种语言信息转变成另一种语言信息的活动。 这个过程从逻辑上可以分为两个阶段:首先,必须从源语言中译码含义,然后把信息重新编码成目标语言。所有的这两步都要求对语言语义学的知识以及对语言使用者文化的了解。除了要保留原有的意思外,一个好的翻译,对于目标语言的使用者来说,應該要能像是以母語使用者说或写得那般流畅,並要符合譯入语的习惯(除非是在特殊情况下,演说者并不打算像一个本语言使用者那样说话,例如在戏剧中)。 翻譯分为口譯、筆譯和手語。口譯又稱為「傳譯」,顧名思義,是指譯員以口語的方式,將譯入語轉換為譯出語。由於語言必定早於文字出現,因此口譯的出現也必定早於筆譯。.

查看 基因组进化和翻译

真核生物

真核生物(学名:Eukaryota)是其细胞具有细胞核的单细胞生物和多细胞生物的总称,它包括所有动物、植物、真菌和其他具有由膜包裹着的复杂亚细胞结构的生物。 真核生物与原核生物的根本性区别是前者的细胞内含有细胞核,因此以真核来命名这一类细胞。许多真核细胞中还含有其它细胞器,如粒線體、叶绿体、高尔基体等。 由于具有细胞核,因此真核细胞的细胞分裂过程与没有细胞核的原核生物也大不相同。 真核生物在进化上是单源性的,都属于三域系统中的真核生物域,另外两个域为同属于原核生物的细菌和古菌。但由于真核生物与古菌在一些生化性质和基因相关性上具有一定相似性,因此有时也将这两者共同归于新壁總域演化支。 科學家相信,從基因證據來看,真核生物是細菌與古菌的基因融合體,它是某種古菌與細菌共生,異種結合的產物。.

查看 基因组进化和真核生物

生理学

生理學(physiology; ) 是生物學的一門子領域,研究生物體及其各組成部分,在活體系統中化學或物理的功能活動。 生理学一般被分为植物生理学和动物生理学,但生理学的基本原理是对地球上所有的生物来说一致的。比如许多研究酵母的细胞的生理学结果也可以运用在人的细胞中。 动物生理学包括人类生理学和其他动物的生理学,植物生理学也从这个分支的许多成果获益。 从生理学中分出来的新的学科有生物化学、生物物理学和生物力学。医药学从生理学的成果也收益很大。.

查看 基因组进化和生理学

甘氨酸

氨酸(glycine,简写为Gly或G),即胺基乙酸,是20个蛋白氨基酸中分子量最小的一个。它是白色或浅黄色晶体,易溶于水,有甜味。甘氨酸的侧键是一个氢原子。甘氨酸的α碳连接两个氢原子,故不是旋光异构体。由于甘氨酸的侧键非常小,它可以占据其它氨基酸无法占据的空间,比如作为胶原螺旋内的氨基酸。 在一些蛋白质中(比如细胞色素、肌红蛋白和血红蛋白)它随着进化的演变变化相当小,因为假如一个比较大的氨基酸取代它的话整个蛋白质的结构就会变化。 大多数蛋白质只含少量甘氨酸,膠原蛋白是一个重要的例外,它含三分之一的甘氨酸。.

查看 基因组进化和甘氨酸

物种形成

物種形成,又稱為種化,是演化的一個過程,指生物的物種一分為二的過程。 达尔文在《物种起源》中认为自然选择是物种形成的主导因素, 但一直以来认为是物种形成是随机的。直到生殖隔离的概念提出后, 自然选择在物种形成中的作用才重新受到重视。.

查看 基因组进化和物种形成

遗传密码

遺傳密碼(英文:Genetic code)是一組規則,將DNA或mRNA序列以三個核苷酸為一組的密碼子轉譯為蛋白質的胺基酸序列,以用於蛋白質合成。幾乎所有的生物都使用同樣的遺傳密碼,稱為標準遺傳密碼;即使是非細胞結構的病毒,它們也是使用標準遺傳密碼。但是也有少數生物使用一些稍微不同的遺傳密碼。朊毒體以蛋白質為遺傳密碼。 密码子简并性是遗传密码的突出特征。 舒建军的遗传密码对称表 提供了可能的密码子-胺基酸关系的新视角, 并解释了密码子简并性遗传密码背后的隐含含义/逻辑。.

查看 基因组进化和遗传密码

鳥嘌呤

鳥嘌呤(Guanine,又稱鳥糞嘌呤)是五種不同碱基中的其中之一,並同時存在於脱氧核醣核酸(DNA)及核醣核酸(RNA)中。鳥嘌呤是嘌呤的一種,並與胞嘧啶(cytosine)以三個氫鍵相連。.

查看 基因组进化和鳥嘌呤

麻风病

漢生病(Leprosy),又作--、癩病、癘風,醫學領域稱為漢--生病或韓森氏病(Hansen's Disease),是由麻風桿菌與瀰漫型痲瘋分枝桿菌引起的一種慢性傳染病,主要經由飛沫傳染但傳染性並不強。感染初期並不會出現症狀,潛伏期可達5至20年。該疾病會在神經系統、呼吸道、皮膚與眼部出現,導致患處失去痛覺感知的能力,常造成四肢反覆損傷而需部分截肢,也可能出現虛弱與視力變差的症狀。 視不同的細菌數量,漢生病可分為兩種主要的類型:少菌型(paucibacillary)與多菌型(multibacillary)。兩個類型主要是由皮膚感覺遲鈍甚至消失的白色斑塊病變數量來分,少於五個病變稱為少菌型,多於五個則是多菌型。確診漢生病的方式有二:一是在皮膚切片下找到;二是以聚合酶連鎖反應偵測細菌DNA的存在。漢生病的感染者多為經濟狀況不佳者,並多以飛沫傳染的途徑傳播。此病傳染性並不高。 漢生病經治療後可痊癒。針對少菌型漢生病的治療是服用二胺苯碸(Dapsone)及利福平(Rifampin)六個月。而多菌型漢生病的治療則包括12個月利福平、二胺苯碸及氨苯吩嗪的療程。這些治療藥物由世界衛生組織免費提供。此外,也有其他的抗生素能被用來治療漢生病。據統計,2012年全球有189,000位慢性個案及230,000的新個案。慢性個案的數量較1980年代的五百多萬已下降 。大多數的新個案都發生在16個國家,而印度的個案數佔了其中的一半。在過去20年中,有1,600萬的漢生病患者自疾病中痊癒。 漢生病影響了人類數千年。該疾病的英文名稱起源於拉丁文的lepra,意義為「鱗片」。而漢--生病(Hansen's disease)的名稱則是起源於內科醫師格哈德·阿瑪爾·漢生。在部份國家會將病患隔離於漢生病療養院,如印度隔離了超過1,000人,中國數百人,非洲大陸也有隔離病患的情形。然而,大部分的療養院皆已關閉。漢生病在歷史上常受到,而這也是該疾病無法自我通報與早期治療的一個障礙。1954年開始,為了讓漢生病患受到重視,將每年的1月26日或離此日最近的星期天定為。.

查看 基因组进化和麻风病

麻风杆菌

麻风杆菌也称为韩森氏杆菌,是一种可引起麻风病的分支杆菌,菌体呈短小棒状或稍弯曲,长约2-6µm,宽约0.2-0.6µm,抗酸染色呈红色(抗酸性),革兰氏染色呈阳性,好氧菌。.

查看 基因组进化和麻风杆菌

转座子

转座子(Transposon,亦称为转座元件,跳跃子)是一类DNA序列,它们能够在基因组中通过转录或逆转录,在内切酶(Nuclease)的作用下,在其他基因座上出现。转座子的这种行为,与假基因(Pseudogene)的出现颇有相似甚至相同之处。有些科学家将后者视为“基因化石”,是透视物种进化的痕迹之一。转座子的发现,证明了基因组并不是一个静态的集合,而是一个不断在改变自身构成的动态有机体。根据转座子“跳跃”方式的不同,转座子被分为I型和II型转座子。.

查看 基因组进化和转座子

转录

转录()是遗传信息由DNA转换到RNA的过程。作为蛋白质生物合成的第一步,转录是mRNA以及非編碼RNA(tRNA、rRNA等)的合成步骤。 转录中,一段基因会被读取、複製为mRNA;就是说一特定的DNA片段作为模板,以DNA依赖的核糖核酸聚合酶(RNA聚合酶或RNA合成酶)作为催化剂而合成前mRNA的过程。 转录尚有未清楚的部分,例如是否需要DNA解旋酶,一般来说是需要的,但某些地区称RNA聚合酶可代替其行使识别DNA上的有关碱基以开始转录的功能。 mRNA转录时,DNA分子双链打开,在RNA聚合酶的作用下,游离的4种核糖核苷酸按照碱基互补配对原则结合到DNA单链上,并在RNA聚合酶的作用下形成单链mRNA分子。至此,转录完成。 转录通常是多起点多向复制。 转录时所转录的仅为DNA上有遗传效应的片段(DNA),不包括内含子。 转录按以下一般步骤进行:.

查看 基因组进化和转录

转录因子

在分子生物学中,转录因子(英語:Transcription factor)是指能够结合在某基因上游特异核苷酸序列上的蛋白质,这些蛋白质能调控其基因的转录。转录因子可以调控核糖核酸聚合酶(RNA聚合酶,或叫RNA合成酶)与DNA模板的结合。转录因子一般有不同的功能区域,如DNA结合结构域与效应结构域。转录因子不单与基因上游的启动子区域结合,也可以和其它转录因子形成转录因子复合体来影响基因的转录。 转录因子是与DNA特异性结合的一系列蛋白质。结合在DNA上的启动子以及增强子之类控制转录的区域上,促进或者抑制DNA上的遗传信息向RNA转录的过程。转录因子的这一机能可以单独,或者通过与其它蛋白质形成复合体来完成。人类的基因组上已经推定出大约1800个基因控制转录因子的编码。.

查看 基因组进化和转录因子

胞嘧啶

胞嘧啶(cytosine, C),學名為2-羰基-4-氨基嘧啶,是组成DNA的四种基本碱基之一。胞嘧啶核苷、胞嘧啶核苷酸均可作为升高白细胞(白血球)的药物。可由二巯基脲嘧啶、浓氨水和氯乙酸为原料合成制得。 Category:胺 Category:嘧啶酮.

查看 基因组进化和胞嘧啶

胸腺嘧啶

胸腺嘧啶(Thymine,簡寫為 T),又稱為5-甲基尿嘧啶(5-methyluracil),為嘧啶類鹼基,是形成DNA核苷酸中四種鹼基(G-C-A-T)的其中一種。.

查看 基因组进化和胸腺嘧啶

閱讀框架

閱讀框架(Reading Frame)在分子生物學中是指將mRNA的鹼基序列劃分成連續、互不重疊的三元組的方式或這樣的劃分方式在相應DNA上的對應。這樣的三元組稱爲密碼子。每個密碼子可編碼一個氨基酸或作轉譯的終止信號。 通常我們把一條核酸鏈的5'端(磷酸基團端)稱爲首端,將其3'端稱爲尾端。翻譯時核糖體讀取mRNA的方向爲5'端到3'端。閱讀框架一共有三種,劃分各相隔一個鹼基。 通常來說,一段鹼基序列只採用一種閱讀框架(這種閱讀框架稱爲開放閱讀框(ORF)),而另外兩種讀框則因爲會頻繁出現終止密碼子而被關閉。但在一些病毒內,一段鹼基序列卻可以採用多種重疊的讀框。哺乳動物也有相似的例子:由線粒體DNA中編碼ATP酶的兩個亞基的區域轉錄出的mRNA在同一序列區域有閱讀框架重疊的現象。.

查看 基因组进化和閱讀框架

腺嘌呤

腺嘌呤(Adenine,簡稱A,旧称维生素B4)是一種嘌呤,在生物化學上具有許多不同的功用。於細胞呼吸中,是以富有能量的腺苷三磷酸(ATP),以及輔因子煙醯胺腺嘌呤二核苷酸(NAD)、黃素腺嘌呤二核苷酸(FAD)等形式發生作用。並且在蛋白質生物合成過程裡作為DNA與RNA的組成物。.

查看 基因组进化和腺嘌呤

酵母

酵母(拼音:中國大陆:jiàomǔ、台灣:xiàomǔ;台語:kànn-bó;注音:中國大陆:ㄐㄧㄠˋ ㄇㄨˇ、台灣:ㄒㄧㄠˋ ㄇㄨˇ;德文: Hefen;英文:Yeast)是非分类学术语,泛指能发酵糖類的各种单细胞真菌,不同的酵母菌在进化和分类地位上有异源性。酵母菌种类很多,已知的约有56属500多种。一些酵母菌能夠通過出芽的方式進行無性生殖,也可以通過形成孢子的形式進行有性生殖。酵母經常被用於酒精釀造或者麵包烘培行業。目前已知有1500多種酵母,大部分被分類到子囊菌門。酵母菌屬兼性厭氧菌。.

查看 基因组进化和酵母

选择压力

选择压力,或进化压力,可以被认为是外界施与一个生物进化过程的压力,从而改变该过程的前进方向。所谓达尔文的自然选择,或者物竞天择,适者生存,即是说,自然界施与生物体选择压力从而使得适应自然环境者得以存活和繁衍。.

查看 基因组进化和选择压力

染色体

-- 染色體(chromosome)是真核生物特有的構造,主要由雙股螺旋的脱氧核糖核酸和5种被称为组蛋白的蛋白质构成,是基因的主要載體。染色体是细胞内具有遗传性质的遗传物质深度压缩形成的聚合体,易被碱性染料染成深色,所以叫染色体(由染色质组成)。染色质和染色体是同一物质在细胞分裂间期和分裂期的不同形态表现。染色体出现于分裂期。染色质出现于间期,呈丝状。其本质都是脱氧核糖核酸(DNA)和蛋白质的组合(即核蛋白组成的),不均匀地分布于细胞核中 ,是遗传信息(基因)的主要载体,但不是唯一载体(如细胞质内的線粒体)。.

查看 基因组进化和染色体

接合

接合(英文:Conjugation,又译结合),又称为接合作用、细菌接合,是发生于原生动物间的现象,指的是两个细菌之间发生的一种遗传物质交换现象,属于细菌有性生殖的一个重要阶段。在接合现象发生时,两个细胞直接接合或者通过类似于桥一样的通道接合,并且发生基因的转移。这种现象是在1946年被Joshua Lederberg和Edward Tatum所发现,接合与转化和转导都被称作基因水平转移机制,注意的是这种机制并不一定需要两个细胞-细胞间的直接接触。 接合经常被认为是细菌中有性生殖,相当于动物间的交配,因为它有涉及到基因的交换。在接合的过程中的供体细胞提供了一种結合或者可移动的遗传成分,这些成分一般是质粒或转座子。大多数接合质粒有一个确保受体细胞并不含有相似的遗传成分的系统。 遗传信息的转移通常对受体是有益的。好处包括获得抗生素耐药性,或者获得其他的特异性以应对环境的变化。这种对受体有益的质粒可以被视作内共生生物然而从别的方面来看,细菌的寄生和接合可以作为细菌的一种进化方式使它们得到个体的繁衍与基因的扩散。.

查看 基因组进化和接合

核糖核酸

核糖核酸(Ribonucleic acid),簡稱RNA,是一類由核糖核苷酸通過3',5'-磷酸二酯鍵聚合而成的線性大分子。自然界中的RNA通常是單鏈的,且RNA中最基本的四種鹼基爲A(腺嘌呤)、U(尿嘧啶)、G(鳥嘌呤)、C(胞嘧啶)通過轉錄後修飾,RNA可能會帶上(Ψ)這樣的稀有鹼基,相對的,與RNA同爲核酸的DNA通常是雙鏈分子,且含有的含氮鹼基爲A(腺嘌呤)、T(胸腺嘧啶)、G(鳥嘌呤)、C(胞嘧啶)四種。 RNA有着多種多樣的功能,可在遺傳編碼、翻譯、調控、基因表達等過程中發揮作用。按RNA的功能,可將RNA分爲多種類型。比如,在細胞生物中,mRNA(信使RNA)爲遺傳信息的傳遞者,它能夠指導蛋白質的合成。因爲mRNA有編碼蛋白質的能力,它又被稱爲編碼RNA。而其他沒有編碼蛋白質能力的RNA則被稱爲非編碼RNA(ncRNA)。它們或通過催化生化反應,或通過調控或參與基因表達過程發揮相應的生物學功能。比如,tRNA(轉運RNA)在翻譯過程中起轉運RNA的作用,rRNA(核糖體RNA)於翻譯過程中起催化肽鏈形成的作用,(小RNA)起到調控基因表達的作用。此外,RNA病毒甚至以RNA作爲它們的遺傳物質。 RNA通常由DNA通過轉錄生成。RNA在細胞中廣泛分佈,真核生物的細胞核、細胞質、粒線體中都有RNA。.

查看 基因组进化和核糖核酸

核鹼基

核鹼基(英語:Nucleobase)是指一類含氮鹼基(nitrogenous base),在生物學上通常簡單地稱之鹼基(base)。是在DNA和RNA中,起配对作用的部分。核鹼基都是杂环化合物,其氮原子位于环上或取代氨基上,其中一部分(取代氨基,以及嘌呤环的1位氮、嘧啶环的3位氮)直接参與碱基配对。 常見的核鹼基共有5种:胞嘧啶(缩写C)、鸟嘌呤(G)、腺嘌呤(A)、胸腺嘧啶(T,通常為DNA专有)和尿嘧啶(U,通常為RNA专有)。腺嘌呤和鸟嘌呤属于嘌呤族(缩写作R),它们具有双环结构。胞嘧啶、尿嘧啶、胸腺嘧啶属于嘧啶族(Y),它们的环系是一个六元杂环。RNA中,尿嘧啶取代了胸腺嘧啶的位置。胸腺嘧啶比尿嘧啶多一个5位甲基,这个甲基增大了遗传的准确性。 核碱基通过糖苷键与核糖或脱氧核糖的1位碳原子相连而形成的化合物叫核苷。核苷再与磷酸结合就形成核苷酸,磷酸基接在五碳糖的5位碳原子上。.

查看 基因组进化和核鹼基

核苷酸

核苷酸(Nucleotide)为核酸的基本组成单位。核苷酸由一個含氮鹼基作為核心,加上一個五碳糖和一個或者多个磷酸基團組成。含氮碱基有五种可能,分别是腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶和尿嘧啶。五碳糖为脱氧核糖者称为脱氧核糖核苷酸(DNA的單體),五碳糖为核糖者称为核糖核苷酸(RNA的單體)。 根据构成核酸的核苷酸数量分为寡核苷酸(少于或等于15个核苷酸)和多核苷酸(15个核苷酸以上)。.

查看 基因组进化和核苷酸

比较基因组学

比较基因组学(Comparative genomics)是基于基因组图谱和测序技术,对已知的基因特征和基因组结构进行比较以了解基因的功能、表达机制和不同物种親緣關係的生物学研究。基因组的特征可包括的DNA序列,基因,基因顺序,调控序列,和其它的基因组结构标志。.

查看 基因组进化和比较基因组学

氢键

氫鍵是分子間作用力的一種,是一种永久偶极之间的作用力,氢键发生在已经以共价键与其它原子键结合的氢原子与另一个原子之间(X-H…Y),通常发生氢键作用的氢原子两边的原子(X、Y)都是电负性较强的原子。氢键既可以是分子间氢键,也可以是分子内的。其键能最大约为200kJ/mol,一般为5-30kJ/mol,比一般的共价键、离子键和金属键键能要小,但强于静电引力。 氢键对于生物高分子具有尤其重要的意义,它是蛋白质和核酸的二、三和四级结构得以稳定的部分原因。.

查看 基因组进化和氢键

有性生殖

有性生殖是生殖的一种类型,它导致了后代加强基因多样化。它可以用两个进程刻画。第一个是减数分裂,涉及将染色体个数减半。第二个是受精,它使得两个配偶子融合,并恢复原来的染色体个数。在减数分裂时,每对染色体通常交叉以达到基因重组。 性的演变是现代演化生物学的重大谜团。最早的有性繁殖的生物的化石证据是来自狭带纪的真核细胞,距今约12到10亿年。有性生殖是绝大多数可见生命体的繁殖形式,包括几乎所有的动物和植物。细菌接合(bacterial conjugation),也就是两个细菌之间的DNA转移,有时被错误地视为有性生殖,因为机理其实很相似。 当代进化论观点提出了为何虽然单性生殖在有些方面是更强的生殖形式,但有性生殖依然持续存在的一些理由。有性生殖可能是因为在进化树本身上的压力而保持下来 - 因为通过有性重组比单性繁殖更能产生适应变化的环境的分支,並有效處理突變與寄生蟲而将物种散布出去。或者,有性生殖可能像'棘轮'那样控制了进化发展的速度,因为一个进化枝会和另一个竞争有限的资源。.

查看 基因组进化和有性生殖

另见

分子演化

基因組學