目录
協同物種形成
協同物種形成指不同物種間平行的物種形成過程。.
查看 物种形成和協同物種形成
受精卵
受精卵(zygote、合子)在发育生物学中用来描述生物的第一阶段,此时它只是一个单细胞。这个词也会被较为宽松地运用于经过最初几分裂后的细胞,虽然严格地讲这一阶段应称为卵裂球(分裂球,裂球)。一枚受精卵通常是通过两个单倍体细胞——女性的卵子和男性的精子通过受精结合在一起,所形成的二倍体细胞。因此,受精卵包含了来自父亲和母亲的DNA,提供了一个新的个体的全部遗传信息。 在哺乳动物的繁殖过程中,受精后所形成的受精卵会移动到输卵管,分裂成更多的细胞,但其大小却不改变。 受精卵的分裂是有丝分裂,通常被称为“细胞分裂”。 所有的哺乳动物在一生中都会经过受精卵这一阶段。受精卵会发育成胚胎,然后变成胎儿。 人类受精卵会存在约大约4天,并在第5天成为囊胚,然后进一步发育为原肠胚。.
查看 物种形成和受精卵
環物種
物種(英語:Ring species)是指生物學中一个物種因地理區隔(如湖泊、山岳、峽谷)等因素而沿著該區隔繁衍產生多個亞種,各相鄰亞種之間有著連續性的基因變化,當此一連續亞種之首尾物種亦相鄰,首尾兩亞種却因差異太大而不進行杂交繁殖的现象。此物種整體分布型態正如一圓環狀,故名為“環物種”。 环物种展现了临域性物种形成的一个过程,也成为物种演化的证据。.
查看 物种形成和環物種
生物
生物(拉丁语,德语: Organismus, ,又称有機體)是指稱類生命的个体。在生物学和生态学中, 地球上约有870萬種物種(±130萬),其中650萬種物種在陆地上,220万种生活在水中。 生物最重要和基本的特徵在生物會進行新陳代謝及遺傳兩點,前者說明所有生物一定會具備合成代谢以及分解代谢(兩個是完全相反的兩個生理反應過程),並且可以將遺傳物質複製,透過自我分裂生殖(無性生殖)或有性生殖,交由下一代繁殖下去以避免滅絕,这是類生命现象的基础。 生命的起源和生命各个分支之间的关系一直存在争议,古早的生命分類已經過時,近代古典生物學的分類又受到分子生物學的挑戰。一般而言,我們將生物分為兩大類:原核生物和真核生物。原核生物分为兩大域:细菌(Bacteria)和古菌(Archaea),这两个域相互之间的关系并不比他们和真核生物的关系更为接近。在演化史的研究上,原核生物和真核生物之间一直缺乏联系。類似麻煩的還有病毒與內共生細菌等的分類,隨著現代生物化學的研究逐漸深入,出現了有如物理學中存在量子現象一般,在特定微觀世界下許多傳統認知出現錯誤,導致以往常理被顛覆的情況。 真核生物的特徵是有細胞核以及其他膜狀細胞器(例如動物和植物體內的粒線體粒線體也可以說是植物動物體的發電廠因為他可以製造很多的能量,以及植物及藻類中的葉綠素),一種假說是叶绿体和线粒体是由内共生细菌(endosymbiotic bacteria)演化而来T.Cavalier-Smith (1987) The origin of eukaryote and archaebacterial cells, Annals of the New York Academy of Sciences 503, 17–54 。多细胞生物(又稱至於生物實在30班一年且出來則指包含多于一个细胞的生物,在地質學上直到五億年前才出現大爆發。.
查看 物种形成和生物
生殖隔离
生殖隔离,在生物学上通常指由于生殖方面的原因,即使地緣关系相近,但物種不同的类群之间不能互相交配,或不易交配成功的隔离机制。一般来讲生殖隔离用以定義物种,不具有生殖隔离的两个个体则以最多以亚种加以区分,生殖隔離的演化即是物種形成。 生殖隔離可以依其機制發生的時間點在交配之前或之後,或形成配子之前或之後,分為交配前隔離、交配後隔離,或配子前隔離、配子後隔離。Coyne和Orr的研究指出,配子前隔離可以在兩個族群差異不大時就演化出來,配子後隔離則隨基因差異增加而增加;除此之外,交配前隔離在同域種化時較快演化出來。.
查看 物种形成和生殖隔离
物种
种(Species)或稱物种,生物分类的基本单位,位于生物分类法中最後一级,在属之下。較為籠統的概念,是指一群或多或少与其它这样的群体形态相同,並能够交配繁殖出具生殖能力後代的相关生物群体。以演化生物學家恩斯特·麥爾的定义来说,物种是:「能够(或可能)相互配育的自然种群的类群,这些类群与其它这样的类群在生殖上相互隔离着。」昆虫学家陈世骧(1978)对物种所下定义为:「物种是繁殖单元,由又连续又间断的居群所组成;物种是进化单元,是生物系统线上的基本环节,是分类的基本单元。」。 在分类学中,一个物种被赋予一个拉丁化的雙名法名称。该名称使用斜体印刷,手写时则加上底線;属名首字母大写,屬名之後紧跟一个唯一的形容词,這個詞稱為種小名或種加詞,其首字母不可大寫。只有完整的双名制名称才称为「种名」,而非仅仅是双名制名称的第二个部分。例如人的种名叫Homo sapiens(智人),而不是sapiens。 物种也是演化和生物多样性的基本单元。.
查看 物种形成和物种
物种起源
《物種起源》(On the Origin of Species)或物種源始,全稱《論處在生存競爭中的物种之起源(源於自然選擇或者對偏好種族的保存)》(On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life),是達爾文論述生物演化的重要著作,出版於1859年。該書是19世紀最具爭議的著作之一,其中的觀點大多數為當今的科學界普遍接受。 在該書中,達爾文首次提出演化論的觀點。他使用自己在1830年代環球科學考察中積累的資料,試圖證明物種的演化是通過自然選擇(天擇)的方式實現的。.
查看 物种形成和物种起源
遺傳重組
遺傳學上的重組是指DNA片段斷裂並且轉移位置的現象,也稱為遺傳重組或是基因重組。发生在减数分裂时非姐妹染色单体上的基因结合。 對原核生物(例如細菌)來說,個體之間可以透過交接,或是經由病毒(例如噬菌體)的傳送,來交換彼此的基因,並且利用基因重組將這些基因組合到本身原有的遺傳物質中。 對於較複雜的生物來說,重組通常是因為同源染色體配對時發生互換,使得同源染色體上的基因在遺傳到子代時,經常有不完全的連鎖。由於重組現象的存在,科學家可以利用重組率來定出基因之間的相對位置,描繪出基因圖譜。.
查看 物种形成和遺傳重組
遗传漂变
遗传漂变,或基因漂变,是指种群中基因库在代际发生随机改变的一种现象。由于任何一个个体的生存与繁殖都受到随机因素影响,繁殖过程可看做一种抽样,子代携带的等位基因即是对亲代抽取的一种样本。这一过程中的抽样误差使子代中的等位基因频率与亲代并不相等,尤其是在小种群中。遗传漂变可能改变某一等位基因的频率,甚至致其完全消失,进而降低种群的遗传多样性。一般情况下,种群的生物个体的数量越少,遗传漂变的效应就越强。遗传漂变是生物进化的关键机制之一。 遗传漂变的概念由种群遗传学的奠基人之一休厄尔·赖特在20世纪30年代首次提出。日本科学家木村资生于50年代起,进一步将漂变理论发展完善,并以此为基础提出了中性进化理论。进化生物学界曾对遗传漂变在进化中的作用进行过多次激烈的讨论。20世纪后半叶以来,随着现代进化综论的确立,遗传漂变的重要性逐渐得到了普遍认同。.
查看 物种形成和遗传漂变
达尔文
达尔文可以指:.
查看 物种形成和达尔文
間斷平衡
間斷平衡(Punctuated equilibrium)是一個演化生物學理論。此理論認為行有性生殖的物種可在某一段時間中,經歷相對傳統觀念而言較為快速的物種形成過程,之後又經歷一段長時間無太大變化的時期。 間斷平衡理論最早是由美國古生物學家尼爾斯·艾崔奇與史蒂芬·古爾德,基於恩斯特·麥爾的異域物種形成,以及其他一些遺傳理論所提出。.
查看 物种形成和間斷平衡
自然选择
自然选择(natural selection,傳統上也譯為天擇)指生物的遺傳特徵在生存競爭中,由於具有某種優勢或某種劣勢,因而在生存能力上產生差異,並進而導致繁殖能力的差異,使得這些特徵被保存或是淘汰。自然選擇則是演化的主要機制,經過自然選擇而能夠稱成功生存,稱為「適應」。自然選擇是唯一可以解釋生物適應環境的機制。 這個理論最早是由达尔文在1859年出版的《物種起源》中提出,其於早年在加拉巴哥群島觀察了數種動物後發現,島上很少有與鄰近大陸相似的物種,並且還演化出許多獨有物種,如巨型的加拉巴哥象龜,達爾文於開始以為,島上的鷽鳥應與南美洲發現的為同種,經研究,十三種燕雀中只有一種是與其大陸近親類似的,其餘皆或多或少發生了演化現象,他們爲了適應島上的生存環境,改變了鳥喙的大小。.
查看 物种形成和自然选择
演化
--(evolution),指的是生物的可遺傳性狀在世代間的改變,操作定義是種群內基因頻率的改變。基因在繁殖過程中,會經複製並傳遞到子代。而基因的突变可使性狀改變,進而造成個體之間的遺傳變異。新性狀又會因為物種迁徙或是物種之間的水-平-基因轉移,而隨著基因在族群中傳遞。當這些遺傳變異受到非隨機的自然选择或隨機的遺傳漂變影響,而在族群中變得較為普遍或稀有時,就是演化。演化會引起生物各個層次的多樣性,包括物種、生物個體和分子 。 地球上所有生命的共同起源,約35-38億年前出現,其被稱為最後共同祖先,但是2015年一項在西澳的古老岩石進行的研究中發現41億年前「的行跡」。 新物種(物種形成)、種內的變化()和物種的消失(絕種)在整個地球的不斷發生,這被形態學和生化性狀證實,其中包括共同的DNA序列,這些共同性狀在物種之間更相似,因為它源於最近的共同祖先,並且可以作為進化關係的依據建立生命之樹(系统发生学),其利用現有的物種和化石建立,化石記錄的事物包括由的石墨 、,以至多細胞生物的化石。生物多樣性的現有模式被物種形成和滅絕塑造。據估計,曾經生活在地球上的物種99%以上已經滅絕。地球目前的物種估計有1000萬至1400萬。其中約120萬已被記錄。 物種是指一群可以互相進行繁殖行為的個體。當一個物種分離成各個交配行為受到阻礙的不同族群時,再加上突變、遺傳漂變,與不同環境對於不同性狀的青睞,會使變異逐代累積,進而產生新的物種。生物之間的相似性顯示所有已知物種皆是從共同祖先或是祖先基因池逐漸分化產生。 以自然選擇為基礎的演化理論,最早是由查爾斯·達爾文與亞爾佛德·羅素·華萊士所提出,詳細闡述出現在達爾文出版於1859年的《物種起源》.
查看 物种形成和演化
族群
族群(Ethnic Group),是指一群人,他們認為彼此共享了相同的祖先、血緣、外貌、歷史、文化、習俗、语言、地域、宗教、生活習慣與國家體驗等,因此形成一個共同的群體。為區分我族及「他者」的分類方式之一。族群含义在20世紀後有轉變,從原來以少數民族或少數族裔的意思,到後來以文化特徵區分,而最新的看法則认为族群是社會過程後的產生的結果。因此,族群可能因歷史及時空環境,基于歷史、文化、语言、地域、宗教、血緣祖先認同、行为、生物/外貌特征而形成「一群」与其它有所区别的群体。p.456 "The ideas of ethnicity and ethnic group have a long history, often related to "otherness".
查看 物种形成和族群
性選擇
性選擇或性擇是一個進化生物學的理論。此理論解釋同一性別的個體(通常是雄性)對交配機會的競爭如何促進性狀的演化。同一物種的兩個性別之間,通常有至少一個性別必須競爭取得有限的交配機會。由於個體間存在可遺傳的差異,造成有的個體在競爭中較為成功,此較成功的個體將此差異給後代,便造成性擇演化。通常雌性在生殖過程中投資較多,因此對交配對象較挑剔,所以性擇是作用在雄性的性狀上,但在性別角色相反的海馬等海龍科魚類上,則是作用在雌性(參見:貝特曼原理)。.
查看 物种形成和性選擇
另见
性选择
生態學
- 三角洲
- 共生
- 农村
- 初级生产
- 副极地气候
- 勞恩凱爾植物生活型分類系統
- 嗜極生物
- 基因庫
- 基因污染
- 奠基者效应
- 寄生
- 异域物种形成
- 影子生物圈
- 拉撒路物種
- 捕食
- 政治生態學
- 棲息地
- 次级代谢产物
- 母体效应
- 民主邦联主义
- 氧循環
- 海奴韋萊
- 營養級
- 物候學
- 物种形成
- 生态学
- 生态平衡
- 生態塔
- 生態智慧
- 生活型
- 盗蜜
- 硬叶林
- 社會生物學
- 种间关系
- 移民
- 綠肥
- 腐生生物
- 腐肉
- 華萊士效應
- 营养
- 蘆原
- 警戒作用
- 资源
- 過度開發
- 食腐動物
亦称为 種化,物种的形成。