徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

圆规座

指数 圆规座

圆规座(Circinus)是既細小又黯淡的南半天球星座,最初由法國天文學家尼可拉·路易·拉卡伊於1756年創立。英語名字為“圓規”一詞的拉丁語,這個星座代表的是繪圖中用於畫圓的圓規。圓規座內最亮的恆星是圓規座α,視星等為3.19。它是一顆變化輕微變星,同時是夜空中最亮的快速振蕩Ap星。圓規座AX是一顆肉眼可見的造父變星,而則是一顆被認為是由兩顆白矮星合併而成的黯淡恆星。圓規座內有兩顆與太陽類似且擁有行星系統的恆星:HD 134060擁有兩個小的行星,HD 129445則擁有一顆與木星類似的行星。超新星SN 185於公元185年在圓規座出現,現存有中國觀察者的記錄。在最近的20世紀圓規座內還出現過兩顆新星。 銀河橫穿圓規座,當中的顯著天體有疏散星團NGC 5823和行星狀星雲NGC 5315。圓規座內有一個值得注意的螺旋星系——圓規座星系,它於1977年被發現,是最接近銀河系的西佛星系。在1977年被發現的還有圓規座α流星雨(ACI),它是從圓規座輻射出去的流星雨。.

87 关系: 側視半人马座南半天球南三角座南門二南门增二南极反射星雲天燕座天文單位尤金·德爾波特尼可拉·路易·拉卡伊中天 (天文學)中子星主序星彗星徑向速度快速振蕩Ap星北緯10度線圓規座AX圓規座β圓規座X-1圓規座星系圆规國際天文聯會Be星Chandra X-ray Observatory皇家天文學會月報矩尺座磁場秒差距約翰·赫歇爾纬度美国国家航空航天局疏散星团牽星法白矮星銀河平面螺旋星系聯星行星状星云食雙星西佛星系馬腹一角秒變星豺狼座超新星黑洞輻射點...赤纬赤经赤道坐標系統银河系脉冲星金星苍蝇座造父变星G型主序星Harvard UniversityHD 129445HD 129445 bHD 134060NGC 5315NGC 5823O型主序星PSR B1509-58SIMBADSN 185X射线暗星雲恒星光谱恆星系統橙矮星次巨星水準儀澳洲木星木星質量星座昆士蘭州流星雨新星旋轉橢球變星 扩展索引 (37 更多) »

側視

側視是使用周邊視覺查看暗淡物體的一種方法。它包括不直接看物件,看起來有點側向一邊,但仍繼續集中注意於該物件上。在通俗天文學中討論過這個問題,但只有少量嚴謹的研究有量化的效果。然而,這種技術與眼睛的構造特性有關。 宣稱這種技術對天文學家查看大但微弱的星雲和星團最有效。通過技術的發展,有些觀測者報告增益達到3-4個星等(15:1至40:1);但也有報告說沒有明顯的改善。 還有一些從古至今的技術證據,因為亞里斯多德似乎報告曾經觀測到現今被稱為M41的星團。 它也與你是右側視還是左側視有所關聯,最有效的方向是將物件置於視野的鼻骨側,這將避免物件的影像在視野瞬間方向一側約15度的盲點位置成像的可能。所以右眼觀測最好偏向右側,而左眼觀測時則偏向左側。有些人也宣稱以偏向上取代偏向下會有較好的效果。最好的做法是經由實驗,找出自己眼睛的最佳位置。 類似的技術被稱為搖鏡,這是輕微的移動望遠鏡,讓物件在視野的範圍內來來回回的移動。這項技術是基於視覺系統對動態的物體比靜態更敏銳的事實。.

新!!: 圆规座和側視 · 查看更多 »

半人马座

半人马座(Centaurus)是一个巨大的明亮星座,它拥有两颗一等大星,半人马座α星和半人马座β星。半人马座区域内有各种令人感兴趣的天体。.

新!!: 圆规座和半人马座 · 查看更多 »

南半天球

#重定向 南天 (天球).

新!!: 圆规座和南半天球 · 查看更多 »

南三角座

南三角座(Triangulum Austale)位於銀河之中,鄰近半人馬座的南門二和馬腹一,對應北天的三角座。雖然比三角座小,但是主要的恆星明亮,所以比較耀眼。它是16世紀末荷蘭航海家Pieter Dirkszoon Keyser和Frederick de Houtman所創立的十二個星座中最小的。.

新!!: 圆规座和南三角座 · 查看更多 »

南門二

南門二(α Cen、半人馬座α)位於天空南方的半人馬座,英文名Alpha Centauri或Toliman,雖然肉眼分辨不出來,不過南門二實際上是一個三合星系統,其中一顆恆星是全天空第4明亮的恆星。不過因為其中兩顆恆星距離過近,肉眼無法分辨出來,所以它們的綜合視星等為-0.27等(超過第3亮的大角星),絕對星等為4.4等。南門二也作為南十字星座最外圍的指引而聞名,因為南十字星座的位置太過南邊,所以大部分的北半球都看不到。傳聞當年鄭和下西洋,就是用它來指引方向。 南門二是距離太陽最近的恆星系,只有4.37光年(約277,600天文單位)。比鄰星(Proxima Centauri)通常被認為是這個恆星系的成員,距離太陽只有4.24光年。因為南門二距離地球相對較近,所以在關於星際旅行的冒險小說中,理所當然將它當成「第一個停靠港口」,並預測在人口爆炸時甚至會對這個恆星系進行開發與殖民活動。這些觀點通常也在科幻小說與電子遊戲中出現。 2016年8月24日ESO(欧洲南方天文台)发布了他们的新发现——一颗位于比邻星附近的类地行星。.

新!!: 圆规座和南門二 · 查看更多 »

南门增二

南門增二(α Cir/圓規座α)是一顆變星,位於黯淡的南天拱極星座——圓規座。它的視星等為3.19,是圓規座內最亮的恆星,在南半球用肉眼可以輕易地看到。從視差測量估算出此恆星離地球的距離為54.0光年(16.6秒差距)。 此恆星屬於一種叫快速振盪Ap星的已知變星種類。它的振蕩有着多重週期和非徑向脈動,其顯性週期為6.8分鐘。它的恆星光譜有着由外大氣層化學分層現象所引起的獨有特徵。從光譜可以看出它的大氣層缺乏碳、氮和氧,但是卻含有過於豐富的鉻(Cr)。它的恆星光譜型為A7 Vp SrCrEu,意思是它是一顆主序星(A型),且大氣層內含有較大量的鍶(Sr)、鉻和銪(Eu)(與一顆像太陽那樣的典型行星相比)。 南門增二的質量約為太陽質量的150%至170%,而它的半徑則是太陽的兩倍,但是光度卻是太陽的10倍。其外部包層的有效溫度約7,000K,因此有着A型主序星典型的白色光芒。它的自轉週期為4.5天,其極點向地球視線的傾斜約為。 基於南門增二的位置和在太空中移的軌跡,它是移動星群繪架座β移動星群的候選成員。這個星群的成員都共同擁有同一個起源,它們各自的年齡估計約為1千2百萬歲。天文學家估計南門增二在這個星群誕生的時候與集合體中心的距離約為91光年(28秒差距)。.

新!!: 圆规座和南门增二 · 查看更多 »

南极

南極(south pole)是根據地球的旋轉方式決定的最南點。它通常表示地理上的南極區域,有一個固定的位置。按照國際上通行的概念,南緯60度以南的地區稱為南極,它是南大洋及其島嶼和南極大陸的總稱,總面積約6500萬平方公里。.

新!!: 圆规座和南极 · 查看更多 »

反射星雲

反射星雲,以天文學的觀點,只是由塵埃組成,單純的反射附近恆星或星團光線的雲氣。這些鄰近的恆星沒有足夠的熱讓雲氣像發射星雲那樣因被電離而發光,但有足夠的亮度可以讓塵粒因散射光線而被看見。因此,反射星雲顯示出的頻率光譜與照亮他的恆星相似。在星雲中散射光線的是含碳的微粒(像是鑽石塵粒)和其他成分的元素,特別是鐵和鎳,後二者經常會排列在星系磁場中,造成星光輕微的偏極化(Kaler,1998)。哈伯在1922年就區分出了這兩種類型的星雲尼哥。 由於散射對藍光比對紅光更有效率(這與天空呈現藍色和落日呈現紅色的過程相同),所以反射星雲通常都是藍色的。 反射星雲和發射星雲常結合在一起成為彌漫星雲,例如獵戶座大星雲。 已知的反射星雲大約有500個,其中最好看的就是圍繞在昴宿星團周圍的反射星雲,在天空中同一個區域中還有藍色的三裂星雲。心宿二是非常紅的一顆紅巨星(光譜分類為M1),被一個巨大的紅色反射星雲圍繞著。 反射星雲通常也是恆星形成的場所。 在1922年,哈伯出版了他調查亮星雲的結果,這工作的一個部份是反射星雲的光度定律。他得到了反射星雲視大小(R)和關聯的恆星視星等(m)之間的關係: 此處的k是與測量儀器靈敏度相關的常數。.

新!!: 圆规座和反射星雲 · 查看更多 »

天燕座

天燕座是南天星座之一,在南三角座之南,紧接南极座。 天燕座沒有神話,由Poeter Dirkszoon Keyser和Frederick de Houtman所創,為的是紀念新畿內亞的極樂鳥。.

新!!: 圆规座和天燕座 · 查看更多 »

天文單位

天文單位(縮寫的標準符號為AU,也寫成au、a.u.或ua)是天文學上的長度單位,曾以地球與太陽的平均距離定義。2012年8月,在中国北京举行的国际天文学大会(IAU)第28届全体会议上,天文学家以无记名投票的方式,把天文单位固定为149,597,870,700米。新的天文单位以公尺来定义,而公尺的定义来源于真空中的光速,也就是说,天文单位现在不再与地球與太阳的實際距离挂钩,而且也不再受时间变化的影响(虽然天文单位最初的来源就是日地平均距离)。 國際度量衡局建議的縮寫符號是ua,但英語系的國家最常用的仍是AU,國際天文聯合會則推薦au,同時國際標準ISO 31-1也使用AU,后来的國際標準ISO 80000-3:2006又改成了ua。通常,大寫字母僅用於使用科學家的名字命名的單位符號,而au或a.u.也可以是原子單位或是任意單位;但是AU被廣泛的地區使用作為天文單位的符號。以1天文單位距離的值為單位的天文常數的值會以符號A標示。.

新!!: 圆规座和天文單位 · 查看更多 »

尤金·德爾波特

尤金·約瑟夫·德爾波特,比利時天文學家。.

新!!: 圆规座和尤金·德爾波特 · 查看更多 »

尼可拉·路易·拉卡伊

尼可拉·路易·德·拉凱葉.

新!!: 圆规座和尼可拉·路易·拉卡伊 · 查看更多 »

中天 (天文學)

中天是天文學上當行星、恆星或星座等天體,在周日運動的過程中所經過的一個點,在觀察上是該天體正經過當地子午圈的時刻。換言之,是該天體在最高點的位置,也是該天體最接近天頂的時刻。 有時,會使用上中天來描述上述的現象,而下中天則是天體經過子午圈的另一個時間,這時的位置在天球上的最低點。(也就是最接近天底或離天頂最遠的點)。 中天時的高度是在地球上觀測點的緯度加或減該天體與天極的距離,若是110°則應該換成70°,-100°則應換成-80°,依此類推。兩者的地平經度則與方位一樣,但如果我們做方位的變換,則變換前後的數值將相差180°。 對任意一個緯度,會出現三種情況:.

新!!: 圆规座和中天 (天文學) · 查看更多 »

中子星

中子星(neutron star),是恒星演化到末期,經由引力坍縮發生超新星爆炸之後,可能成為的少數終點之一。恆星在核心的氫、氦、碳等元素於核聚变反應中耗盡,当它们最终轉變成鐵元素時便無法从核聚变中获得能量。失去熱輻射壓力支撐的外圍物質受重力牽引會急速向核心墜落,有可能导致外壳的動能轉化為熱能向外爆發產生超新星爆炸,或者根据恒星质量的不同,恒星的内部区域被压缩成白矮星、中子星或黑洞。白矮星被压缩成中子星的過程中恒星遭受劇烈的壓縮使其組成物質中的電子併入質子轉化成中子,直徑大約只有十餘公里,但上面一立方厘米的物質便可重達十億噸,且旋轉速度極快。由於其磁軸和自轉軸並不重合,磁場旋轉時所產生的無線電波等各种辐射可能會以一明一滅的方式傳到地球,有如人眨眼,此時稱作脈衝星。 一顆典型的中子星質量介於太陽質量的1.35到2.1倍,半徑則在10至20公里之間(質量越大半徑收縮得越小),也就是太陽半徑的30,000至70,000分之一。因此,中子星的密度在每立方公分8×1013克至2×1015克間,此密度大約是原子核的密度。 緻密恆星的質量低於1.44倍太陽質量,則可能是白矮星,但质量大於奧本海默-沃爾可夫極限(3.2倍太陽質量)的恆星会继续發生引力坍縮,則無可避免的將產生黑洞。 由於中子星保留母恆星大部分的角動量,但半徑只是母恆星極微小的量,轉動慣量的減少導致轉速迅速的增加,產生非常高的自轉速率,周期從毫秒脈衝星的700分之一秒到30秒都有。中子星的高密度也使它有強大的表面重力,強度是地球的2×1011到3×1012倍。逃逸速度是將物體由重力場移動至無窮遠的距離所需要的速度,是測量重力的一項指標。一顆中子星的逃逸速度大約在10,000至150,000公里/秒之間,也就是可以達到光速的一半。換言之,物體落至中子星表面的速度也將達到150,000公里/秒。更具體的說明,如果一個普通體重(70公斤)的人遇到中子星,他撞擊到中子星表面的能量將相當於二億噸TNT當量的威力(四倍於全球最巨大的核彈大沙皇的威力)。.

新!!: 圆规座和中子星 · 查看更多 »

主序星

主序星在可顯示恒星演化過程的赫羅圖上,是分布在由左上角至右下角,被稱為主序帶上的恆星。 主序帶是以顏色相對於光度繪圖成線的一條連續和獨特的恆星帶。這個色-光圖就是後來埃希納·赫茨普龍和亨利·諾利斯·羅素合作發展出來,著名的赫羅圖。在這條帶子上的恆星就是所謂的主序星或"矮星"。 恆星形成之後,它在高熱、高密度的核心進行核聚变反應,將氫原子轉變成氦,並且創造出能量。在這個生命期階段的恆星,座落在在主序帶上的位置主要是依據它的質量,但化學成分和其它的因素也有一些關係。所有的主序星都處於流體靜力平衡狀態,它來自炙熱核心向外膨脹的熱壓力與來自外圍包層向內擠壓的重力壓維持著平衡。在核心溫度和壓力與能量孳生率有著強烈的相關性,並有助於維持平衡。在核心孳生的能量傳遞到表面經由光球輻射出去。能量經由輻射或對流傳遞,而後著在其區域內會產生階梯狀的溫度梯度,更高的透明度,或兩者均有。 基於恆星產生能量的主要過程,主序帶有時會被分成上段和下段。質量大約在1.5太陽質量以內的恆星,將氫聚集融合成氦的一系列主要程序稱為質子-質子鏈反應。超過這個質量在主序帶的上段,核融合主要是使用碳、氮、和氧原子,經由碳氮氧循環的程序,將氫原子轉變成氦。質量超過太陽10倍的主序星在核心區域會產生對流,這樣的活動繪激發新創建的氦外移,並維持發生核融合所需要的燃料比例。當核心的對流不再發生時,發展出的富氦核心的外圍會被氫包圍著。質量較低的恆星,核心的對流區會逐步的縮小,大約在2太陽質量附近,核心的對流區就會消失。在這個質量以下,恆星的核心只有輻射,但是在接近表面會有對流。隨著恆星質量的減少,對流的包層會增加,質量低於0.4太陽質量的主序星,全部的質量都在對流。 通常,質量越大的恆星在主序帶上的生命期越短。當在核心的核燃料已被耗盡之後,恆星的發展會離開赫羅圖上的主序帶。這時恆星的發展取決於它的質量,質量低於0.23太陽質量的恆星直接成為白矮星,而質量未超過10太陽質量的恆星將經歷紅巨星的階段;質量更大的恆星可以爆炸成為超新星,或直接塌縮成為黑洞。.

新!!: 圆规座和主序星 · 查看更多 »

彗星

彗星(Comet,有時也被誤記為慧星)是由冰構成的太陽系小天體(SSSB),當他朝向太陽接近時,會被加熱並且開始釋氣,展示出可見的大氣層,也就是彗髮,有時也會有彗尾。這些現象是由太陽輻射和太陽風共同對彗核作用造成的。彗核是由鬆散的冰、塵埃、和小岩石構成的,大小從P/2007 R5的數百米至海爾博普彗星的數十公里不等,但大部分都不會超過16公里。 彗星的軌道週期範圍也很大,可以從幾年到幾百萬年。短週期彗星來自超越至海王星軌道之外的柯伊伯帶,或是與離散盤有所關聯 。長週期彗星被認為起源於歐特雲,這是在古柏帶外面,伸展至最近恆星一半距離上,由冰凍天體構成的球殼。長週期彗星受到路過恆星和銀河潮汐的引力攝動而直接朝向太陽前進。雙曲線軌道的彗星可能在進入內太陽系之前曾經被沿著雙曲線軌跡被拋射至星際空間,則只會穿越太陽系一次。來自太陽系外,在銀河系內可能是常見的系外彗星也曾經被檢測到。 彗星與小行星的區別只在於存在著包圍彗核的大氣層,未受到引力的拘束而擴散著。這些大氣層有一部分被稱為彗髮(在中央包圍著彗核的大氣層),其它的則是彗尾(受到來自太陽的太陽風電漿和光壓作用,從彗髮被剝離的氣體、塵埃、和帶電粒子,通常呈線性延展的部分)。然而,熄火彗星因為已經接近太陽許多次,幾乎已經失去了所有可揮發的氣體和塵埃,所以就顯得類似於小的小行星。小行星被認為與彗星有著不同的起源,是在木星軌道內側形成的,而不是在太陽系的外側。主帶彗星和活躍的半人馬小行星的發現,已經使得小行星和彗星之間的差異變得模糊不清。 ,已經知道的彗星有4,894顆,其中大約有1,500顆是克魯茲族彗星和大約484顆短週期彗星,而且這個數量還在穩定的增加中。然而,這只是潛在彗星族群中微不足道的數量:估計在外太陽系的儲藏所內類似的彗星體數量可能達到一兆顆。儘管大多數的彗星都是暗淡和不夠引人注目的,但平均大概每年會有一顆裸眼可見的彗星,其中特別明亮的就會被稱為"大彗星"。 在2014年1月22日,ESA科學家的報告首次明確的指出在矮行星穀神星,也是小行星帶中最大的天體,有水氣存在。這項檢測是通過赫歇爾太空望遠鏡使用遠紅外線技術完成的。此一發現是出人意料之外的,因為彗星,不是小行星,才會有這種典型的"噴流萌芽和羽流"。根據其中一位科學家的說法:"彗星和小行星之間的區隔是越來越模糊了"。 古代也有彗星出现的记录,古人一般認為彗星是凶兆。.

新!!: 圆规座和彗星 · 查看更多 »

徑向速度

视向速度是物體朝向視線方向的速度。一個物體的光線在徑向速度上會受多普勒效应的支配,退行的物體光波長將增加(紅移),而接近的物體光波長將減少(藍移)。 恆星的徑向速度,能夠經由高解析的光譜精確的測量,並且和在實驗室內測出的已知譜線波長做比較。在習慣上,正的徑向速度表示物體在退行,如果是負值,物體則是在接近。 在許多聯星中,軌道運動通常都會造成每秒數公里的徑向速度改變量。這些恆星譜線的變化肇因於都卜勒效應,因此她們被稱為光譜聯星。研究徑向速度可以估計恆星的質量和一些軌道要素,像是離心率、半長軸。同樣的方法也被用在發現環繞恆星的行星上,在這種方法下測量的運動可以確定行星的軌道週期,而位移量的大小可以用來計算行星的質量。.

新!!: 圆规座和徑向速度 · 查看更多 »

快速振蕩Ap星

#重定向 快速振盪Ap星.

新!!: 圆规座和快速振蕩Ap星 · 查看更多 »

北緯10度線

北緯10度線是地球赤道平面以北10度的纬线。它穿過非洲、印度洋、印度次大陸、东南亚、太平洋、中美洲、南美洲和大西洋。 在這條緯線上,夏至的白晝長12小時43分鐘,冬至則為11小時33分鐘。 該線構成了几内亚和塞拉利昂邊界的一段。印度洋中的十度海峽以該線命名。.

新!!: 圆规座和北緯10度線 · 查看更多 »

圓規座AX

圓規座AX,又名CP-63 3436,HD 130701、SAO 252928、HR 5527,是圓規座的一颗恒星,视星等为5.87,位于銀經315.83,銀緯-4.01,其B1900.0坐标为赤經,赤緯。.

新!!: 圆规座和圓規座AX · 查看更多 »

圓規座β

圓規座β(Beta Circini或Beta Cir、β Circini、β Cir)是一顆位於圓規座的白色A型主序星,是圓規座第二亮星,視星等4.069。目前已知該恆星旁有一顆系外行星圓規座βb,發現於2015年。.

新!!: 圆规座和圓規座β · 查看更多 »

圓規座X-1

圓規座X-1(Circinus X-1)是一個包含一顆中子星的X射线联星系統。2007年7月對圓規座X-1的觀測中發現了黑洞聯星系統常見的X射線噴流。它是此類X射線聯星中第一個發現有類似黑洞特徵的系統。而圓規座X-1可能是已觀測的X射线联星中最年輕的其中一個。.

新!!: 圆规座和圓規座X-1 · 查看更多 »

圓規座星系

圓規座星系 (ESO 97-G13) 是一個西佛星系,位於圓規座。圓規座星系距離銀河平面只有4度之遙,距離地球1300萬光年。圓規座星系正面臨劇烈的變化,氣體環帶從星系中心往外射出。外側的氣體環帶距離星系中心700光年,內側的氣體環帶距離星系中心130光年。天文學家直到25年前才開始注意到這個星系,因為銀河系使得圓規座星系顯得黯淡。圓規座星系屬於第二型西佛星系,也是目前已知最接近銀河系的活動星系核之一,雖然它可能比半人馬座A稍遠。 天文學家曾在圓規座星系發現超新星SN 1996cr,錢德拉X射線天文台在2001年攝得該超新星的照片。 圆规座星系是在周围的本星系群中12座大型星系(简称“巨人委员会”)之一。.

新!!: 圆规座和圓規座星系 · 查看更多 »

圆规

圓規在數學和製圖裏,是用來繪製圓或弧的工具,常用於尺规作图。圓規通常是由金屬製成,包括兩部分,由一個鉸鏈連接着,其中可作調整,其中一邊尖銳是用作圓心,另一邊通常可裝上筆。圓規分普通圓規、彈簧圓規、點圓規、樑規等。現代的圓規則多與三角尺、量角器、直尺等成套裝出售。.

新!!: 圆规座和圆规 · 查看更多 »

國際天文聯會

國際天文學聯合會(International Astronomical Union,缩写为IAU;法語:Union astronomique internationale,縮寫為UAI),由博士以上的專業天文學家所組成,積極參與天文學研究與教育。於1919年7月28日在比利時的布魯塞爾成立,由當時的國際天文星圖計畫(Carte du Ciel)、太陽天文聯合會(Solar Union)和國際時間局(Bureau International de l'Heure)等數個組織合併而成。其後,世界各國的國家級天文組織陸續加入,构成今日的規模。該會是國際科學理事會(ICSU)的國際科學聯合成員,也是國際上承認的權威机构,負責統合恆星、小行星、衛星、彗星等新天體以及天文學名詞的定義與英文命名。2014年7月10日宣布「外星世界命名」(NameExoWorlds)活動啟動,開放公眾參與系外行星的命名。 IAU下分成數個工作單位,IAU也負責天文訊息全球電報通報系統,實際工作由中央天文電報局(Central Bureau for Astronomical Telegrams,CBAT)汇总整理天文訊息的匯報及電報的發布。 總會共有90個不同國家或地區共10144位會員,其中美國最多,有2579位會員,其次为法國(700位)、日本(598位)、義大利(568位)、德國(532位)和英國(523位)。.

新!!: 圆规座和國際天文聯會 · 查看更多 »

Be星

Be星是光譜中有明顯的氫發射線的B-型恆星,這類恆星的光譜類型通常標示為Be,B表示是B型恆星,e表示是發射光譜,雖然也可能有其它原子的離子發射譜線,但通常都很微弱。觀測上的其他特徵包括光學上的線性偏極化和比一般的B型恆星更強的紅外線輻射,稱為紅外過量。自然的Be星都是暫時性的,Be星通常都可能保持著正常的B型光譜,而且到前為止都是正常的B型星可能成為Be星。 雖然大多數的Be星都是主序星,但它們都是在複雜的族群中被辨識出來的,包括主序前星、超巨星、原行星雲,和其它的天體。它們或許可以再細分為Be超巨星、赫比格Be星、緻密行星狀星雲Be、共生Be星,而這些全部都還是"不明確"的分類。 第一顆被確認的Be星是策(仙后座γ),在1866年就被安吉洛·西奇觀測到,也是第一顆被發現有發射譜線的恆星。在20世紀初期,瞭解了發射譜線形成的的過程,知道這些譜線來自環繞在周圍的拱星物質,而不是來自恆星本身。現在,所有的觀測特性都可以用恆星拋射出的物質形成的氣體環解釋。紅外過量和偏極化是星光被盤面散射的結果,發射譜線是恆星的紫外線被盤面的氣體吸收之後再輻射出來的。 Be星一般被認為是高速自轉的天體,並且經由干涉儀測量到水委一的自轉扭曲得到證實。雖然,單獨的自轉或許還不足以形成盤面,但是額外的拋射機制是需要的,像是一個磁場或是非徑向的恆星的脈動。Be現象瞬變的本質非常像是過渡到另一種程序的聯接過程,但是細節還有待進一步的研究。 Be星是典型的變星,並且被認為是由於暫時存在的星盤和散射過程造成的仙后γ型變星,或是自然脈動性質造成的波江λ型變星。.

新!!: 圆规座和Be星 · 查看更多 »

Chandra X-ray Observatory

#重定向 钱德拉X射线天文台.

新!!: 圆规座和Chandra X-ray Observatory · 查看更多 »

皇家天文學會月報

皇家天文學會月報(Monthly Notices of the Royal Astronomical Society,MNRAS)是世界上最主要的天文學和天文物理學領域同行評審的學術期刊之一。出刊於1827年,發表作為天文等相關領域原創研究的論文或事件通報。另外,該期刊實際上並非每月出刊,所發表的文章也不僅限於英國皇家天文學會的訊息 。.

新!!: 圆规座和皇家天文學會月報 · 查看更多 »

矩尺座

矩尺座(Norma,拉丁文:角尺)是一個小型而黯淡的南天星座,位於天蝎座與半人馬座之間,銀河在此星座通過。矩尺座並無任何神話故事,它是在1763年由法國天文學家拉卡伊所創立,象徵角尺。.

新!!: 圆规座和矩尺座 · 查看更多 »

磁場

在電磁學裡,磁石、磁鐵、電流及含時電場,都會產生磁場。處於磁場中的磁性物質或電流,會因為磁場的作用而感受到磁力,因而顯示出磁場的存在。磁場是一種向量場;磁場在空間裡的任意位置都具有方向和數值大小更精確地分類,磁場是一種贗矢量。力矩和角速度也是準向量。當坐標被反演時,準向量會保持不變。。 磁鐵與磁鐵之間,通過各自產生的磁場,互相施加作用力和力矩於對方。運動中的電荷亦會產生磁場。磁性物質產生的磁場可以用電荷運動模型來解釋基本粒子,像電子或正子等等,會產生自己內有的磁場,這是一種相對論性效應,並不是因為粒子運動而產生的。但是,對於大多數狀況,這磁場可以模想為是由粒子所載有的電荷因為旋轉運動而產生的。因此,這相對論性效應稱為自旋。磁鐵產生的磁場主要是由內部未配對電子的自旋形成的。。 當施加外磁場於物質時,磁性物質的內部會被磁化,會出現很多微小的磁偶極子。磁化強度估量物質被磁化的程度。知道磁性物質的磁化強度,就可以計算出磁性物質本身產生的磁場。產生磁場需要輸入能量,當磁場被湮滅時,這能量可以再回收利用,因此,這能量被視為儲存於磁場。 電場是由電荷產生的。電場與磁場有密切的關係;含時磁場會生成電場,含時電場會生成磁場。馬克士威方程組描述電場、磁場、產生這些向量場的電流和電荷,這些物理量之間的詳細關係。根據狹義相對論,電場和磁場是電磁場的兩面。設定兩個參考系A和B,相對於參考系A,參考系B以有限速度移動。從參考系A觀察為靜止電荷產生的純電場,在參考系B觀察則成為移動中的電荷所產生的電場和磁場。 在量子力學裏,科學家認為,純磁場(和純電場)是虛光子所造成的效應。以標準模型的術語來表達,光子是所有電磁作用的顯現所依賴的媒介。對於大多數案例,不需要這樣微觀的描述,在本文章內陳述的簡單經典理論就足足有餘了;在低場能量狀況,其中的差別是可以忽略的。 在古今社會裡,很多對世界文明有重大貢獻的發明都涉及到磁場的概念。地球能夠產生自己的磁場,這在導航方面非常重要,因為指南針的指北極準確地指向位置在地球的地理北極附近的地磁北極。電動機和發電機的運作機制是倚賴磁鐵轉動使得磁場隨著時間而改變。通過霍爾效應,可以給出物質的帶電粒子的性質。磁路學專門研討,各種各樣像變壓器一類的電子元件,其內部磁場的相互作用。.

新!!: 圆规座和磁場 · 查看更多 »

秒差距

差距(parsec,符號為pc)是一個宇宙距離尺度,用以測量太陽系以外天體的長度單位。1秒差距定義為某一天體與1天文單位的為1時的距離,但於2015年時被重新定義為一個精確值,為天文單位。1秒差距的距離等同於3.26光年(31兆公里或19兆英里)。離太陽最近的恆星比鄰星,距離大約為。絕大多數位於距太陽500秒差距內的恆星,可以在夜空中以肉眼看見。 秒差距最早於1913年,由英國天文學家提出。其英語名稱為一個混成詞,由「1角秒(arcsecond)的視差(parallax)」組合而來,使天文學家可以只從原始觀測數據,就能夠進行天文距離的快速計算。由於上述部分原因,即使光年在科普文字與日常上維持優勢地位,秒差距仍受到天文學與天體物理學的喜愛。秒差距適用於銀河系內的短距離表述,但在描述宇宙大尺度的用途上,會將其加上詞頭來應用,如千秒差距(kpc)表示銀河系內與周圍物體的距離,百萬秒差距(Mpc)描述銀河系附近所有星系的距離,吉秒差距(Gpc)則是描述極為遙遠的星系與眾多類星體。 2015年8月,國際天文學聯合會通過B2決議文,將絕對星等與進行標準定義,也包含將秒差距定義為一個精確值,即天文單位,或大約公尺(基於2012年國際天文學聯合會對於天文單位的精確國際單位制定義)。此定義對應於眾多當代天文學文獻中對於秒差距的小角度定義。.

新!!: 圆规座和秒差距 · 查看更多 »

約翰·赫歇爾

約翰·弗雷德里克·威廉·赫歇爾爵士,第一代從男爵,FRS,KH(Sir John Frederick William Herschel, 1st Baronet,)出生於英國白金漢郡的斯勞,英国天文學家、數學家、化學家及攝影師,天文學家威廉·赫歇爾的兒子。 約翰·赫歇爾首創以儒略紀日法來紀錄天象日期,他亦在攝影的發展方面作出過重大貢獻。他發現硫代硫酸鈉能作為溴化銀的定影劑。又創造了"photography"(攝影)、"negative"(負片)及"positive"(正片)等名詞。古典攝影工藝是另一項重要發明。.

新!!: 圆规座和約翰·赫歇爾 · 查看更多 »

纬度

纬度(φ)是一个地理坐标,用以确定一点在地球表面上的南北位置。纬度是一个角度,其范围从赤道的0度到南北极的90度。纬度相同的连线或其平行线,是一个与赤道平行的大圆。纬度通常与经度一起使用以确定地表上某点的精确位置。在定义经纬度的时候,做了两个抽象假设。第一,以大地水准面来代替地球的物理表面,大地水准面是一个假想的由地球上静止平衡的海平面延伸到陆地内部而形成的闭合曲面。第二,用一个数学上简单的参考表面来作为大地水准面的近似。最简单的参考表面为球面,但是用旋转椭球面来模拟大地水准面要更为准确些。经纬度在这个参考表面上的定义将在下文中详细说明,经度相同和纬度相同的点的连线共同构成了这个参考表面上的经纬网。地球真实表面上一点的纬度和其在参考表面上的对应点一致,过地球真实表面上一点作参考表面的法线,该法线与参考表面的交点即为真实表面上那一点的对应点。纬度,经度和遵循某种规范的高度共同组成了 ISO 19111 标准中所定义的地理坐标系统。 由于有不同的参考椭球面,地表上一点的纬度特征也就并不唯一。ISO标准中关于这一点的描述为:如果坐标参考系统没有完全定义,那么坐标(主要指经度和纬度)顶多是模糊不清的,至少也是毫无意义的。这对于精确的应用非常重要,比如GPS,但是,在一般的使用中,并不需要很高的精度,通常也就不提及参考椭球面。 在英文文本中,纬度通常使用小写希腊字母phi (φ)来表示。它以度、分、秒或者小数形式的度来计量,再附上N或S来表示北纬或南纬。 无论是为了使用经纬仪还是为了确定GPS卫星的轨道,纬度的测量都要求人们对地球重力场有充分的了解。研究地球的轮廓及其重力场的学科是大地测量学,这些内容将不会在此文中讨论。通过简单的名称变换,这篇文章里涉及到的地球坐标系统也可以扩展运用到月球,行星和其它天体上。 纬度数值在0至30度之间的地区称为低纬度地区;纬度数值在30至60度之间的地区称为中纬度地区;纬度数值在60至90度之间的地区称为高纬度地区。 赤道、南回归线、北回归线、南极圈和北极圈是特殊的纬线。.

新!!: 圆规座和纬度 · 查看更多 »

美国国家航空航天局

美國國家航空暨太空總署(National Aeronautics and Space Administration,縮寫为NASA)是美国联邦政府的一个独立机构,负责制定、实施美国的民用太空计划、與开展航空科學暨太空科學的研究。1958年7月29日,美国总统艾森豪威尔签署了《美国公共法案85-568》,创立了國家NASA航空和太空管理局,取代了其前身美國國家航空諮詢委員會(NACA)。於1958年10月開始運作。自此,美國國家航空暨太空總署負責了美國的太空探索,例如登月的阿波羅計劃,太空實驗室,以及隨後的航天飞机。自2006年2月,美国国家航空航天局的愿景是“開拓未來的太空探索,科學發現及航空研究”。美国国家航空航天局的使命是“理解并保护我们依賴生存的行星;探索宇宙,找到地球外的生命;启示我们的下一代去探索宇宙”。在太空计划之外,美国国家航空航天局还进行长期的民用以及军用航空航天研究。美国国家航空航天局被广泛认为是世界范围内太空机构中執牛耳者。美國國家航空暨太空總署透過地球觀測系統提升對地球的了解,透過太陽科學研究計劃精進太陽科學。美國國家航空暨太空總署注重於利用先進的機械任務探索太陽系中的的所有天體並利用天文觀測台及相關計劃研究天體物理學中的主題,例如大爆炸理論。美國國家航空暨太空總署與許多美國國內及國際的組織分享其研究數據。.

新!!: 圆规座和美国国家航空航天局 · 查看更多 »

疏散星团

疏散星團,也稱為銀河星團,是由同一個巨分子雲中的數百顆至數千顆恆星形成的集團。在銀河系中發現的疏散星團已經超過1,100個,並且被認為還存在更多。它們環繞著銀河中心運轉時,只靠著微弱的引力吸引維繫在一起,並且很容易因為與其它集團或氣體雲的近距離接觸而瓦解。疏散星團的壽命通常只有幾億年,但少數質量特別大的可以存活數十億年。相較之下,質量更大的球狀星團,擁有更多的恆星,成員彼此間的引力極為強大,可以存活的時間也更長。只有在星系的螺旋臂和不規則星系能發現疏散星團,它們只存在於恆星形成活躍區。 年輕的疏散星團可能仍然在它們形成的分子雲中,照亮它們在分子雲內創造出來的H II區。隨著時間推移,來自星團的輻射壓會將分子雲吹散。通常情況下,在輻射壓將氣體驅散之前,大約有10%質量的氣體能凝聚形成恆星。 疏散星團是研究恆星演化的關鍵天體。因為集團中的恆星成員年齡和化學成分都相仿,它們的特性(像是距離、年齡、金屬量和消光)也比單獨的恆星容易測量。有些疏散星團,像是昴宿星團、畢宿星團或英仙α星團,都可以用裸眼直接看見。還有一些,例如雙星團,則幾乎不用儀器也可以察覺它們的存在,而使用雙筒望遠鏡或光學望遠鏡還可以看見更多,野鴨星團,M11,就是個例子。.

新!!: 圆规座和疏散星团 · 查看更多 »

牽星法

牽星法(Star hopping)是業餘天文學常用於在黑暗的天空中定位天體的一種技術。它可以取代或與定位圈結合在一起使用。.

新!!: 圆规座和牽星法 · 查看更多 »

白矮星

白矮星(white dwarf),也稱為簡併矮星,是由简并态物质構成的小恆星。它們的密度極高,一顆質量與太陽相當的白矮星體積只有地球一般的大小,微弱的光度則來自過去儲存的熱能。在太陽附近的區域內已知的恆星中大約有6%是白矮星。這種異常微弱的白矮星大約在1910年就被亨利·諾利斯·羅素、愛德華·皮克林和威廉·佛萊明等人注意到, p. 1白矮星的名字是威廉·魯伊登在1922年取的。 白矮星被認為是中、低質量恆星演化階段的最終產物,在我們所屬的星系內97%的恆星都屬於這一類。, §1.

新!!: 圆规座和白矮星 · 查看更多 »

銀河平面

銀河平面是銀河系主要的質量形成的盤狀平面,垂直於銀河平面的方向指向銀極。通常的使用,在實際的情況下,"星系平面"和"星系極"這兩個項目就是特指地球所在銀河系的平面和極點。 有些星系是不規則的,無法明確的定義盤面,即使是像銀河系一樣的螺旋星系,也會因為星星沒有完全共平面,也難以明確的定義出星系平面。在1959年,IAU使用1950年分點的曆元定義銀河系的北銀極的精確位置是RA.

新!!: 圆规座和銀河平面 · 查看更多 »

螺旋星系

螺旋星系是星系的類型之一,但哈伯在1936年最初的描述是星雲的領域(pp. 124–151),並且列在哈伯序列,成為其中的一部分。多數的螺旋星系包含恆星的平坦、旋轉盤面,氣體和塵埃,和中央聚集高濃度恆星,稱為核球的核心。這些通常被許多恆星構成的黯淡暈包圍著,其中許多恆星聚集在球狀星團內。 螺旋星系是以它們從核心延伸到星盤的螺旋結構命名。螺旋臂是恆星正在形成的區域,並且因為是年輕、炙熱的OB星居住的區域,所以比周圍明亮。 大約三分之二的螺旋星系都有附加的,形狀像是棒子的結構,從中心的核球突出,並且螺旋臂從棒的末端開始延伸。棒旋星系相較於無棒的表兄弟的比率可能在宇宙的歷史中改變,80億年前大約只有10%有棒狀構造,25億年前大約是四分之一,直到目前在可觀測宇宙(哈伯體積)已經超過三分之二有棒狀構造。 在1970年代,雖然很難從地球在銀河系中的位置很難觀察到棒狀結構,但我們的銀河系已經被證實為棒旋星系 。在銀河中心的恆星形成棒狀結構,最令人信服的證據來自最近的幾個調查,包括史匹哲太空望遠鏡。 包含不規則星系在內,現今宇宙中的星系有大約60%是螺旋星系。 它們大多是在低密度區域被發現,在星系團的中心則很罕見。.

新!!: 圆规座和螺旋星系 · 查看更多 »

聯星

聯星是兩顆恆星組成,在各自的軌道上圍繞著它們共同質量中心運轉的恆星系統。有著兩顆或更多恆星的系統稱為多星系統。這種系統,尤其是在距離遙遠時,肉眼看見的經常是單一的點光源,要過其它的觀測方法,才能揭示其本質。過去兩個世紀的研究顯示,一半以上可見的恆星都是多星系統。 雙星(double star)通常被視為聯星的同義詞;然而,雙星應該只是光學雙星。之所以稱為光學雙星,只是因為從地球上觀察它們在天球上的位置,在視線上幾乎是相同的位置。然而,它們的"雙重性"只取決於這光學效應;恆星本身之間的距離是遙遠的,沒有任何共用的物理連結。通過測量視差、自行或徑向速度的差異,可以揭示它們只是光學雙星。 許多著名的光學雙星尚未進行充分與嚴謹的觀測,來確認它們是光學雙星還是有引力束縛在一起的多星系統。 聯星系統在天文物理上非常重要,因為它們的軌道計算允許直接得出系統的質量,而更進一步還能間接估計出半徑和密度。也可以從質光關係(mass-luminosity relationship,MLR)估計出單獨一顆恆星的質量。 有些聯星經常是在以可見光檢測到的,在這種情況下,它們被稱為視覺聯星。許多視覺聯星有長達數百年或數千年的軌道週期,因此還不是很了解它們的軌道。它們也可能通過其他的技術,例如光譜學(聯星光譜)或天體測量學來檢測。如果聯星的軌道平面正巧在我們的視線方向上,它與伴星會發生互相食與凌的現象;這樣的一對聯星會被稱為食聯星,或因為它們是經由光度變化被檢測出來的,而被稱為光度計聯星。 如果聯星系統中的成員非常接近,將會因為引力而相互扭曲它們的大氣層。在這樣的情況下,這些接近的聯星系統可以交換質量,可能會帶來它們在恆星演化時,單獨的恆星不能達到的階段。這些聯星的例子有大陵五、天狼星、天鵝座X-1(這是眾所皆知的黑洞)。也有許多聯星是行星狀星雲的中心恆星,和新星與Ia型超新星的祖恆星。.

新!!: 圆规座和聯星 · 查看更多 »

行星状星云

行星狀星雲是恆星演化至老年的紅巨星末期,氣體殼層向外膨脹並被電離,形成擴大中的發射星雲,經常以英文的縮寫"PN"或複數的"PNe"來表示。"行星狀星雲"這個名稱源自1780年代的天文學家威廉·赫歇爾,但並不是個適當的名字,只因為當他通過望遠鏡觀察時,這些天體呈現類似於行星的圓盤狀,但又是霧濛濛的雲氣。因此,他結合"行星"與"星雲",創造了這個新名詞。赫歇爾的命名雖然不適當,但仍被普遍的採用,並未被替換。相較於恆星長達數十億年歲月的一生,行星狀星雲只能存在數萬年,只是很短暫的現象。 大多數行星狀星雲形成的機制被認為是這樣:在恆星結束生命的末期,也就是紅巨星的階段,恆星外層的氣體殼被強勁的恆星風吹送進太空。紅巨星在大部分的氣體被驅散後,來自高溫的行星狀星雲核心(PNN,planetary nebula nucleus)輻射的紫外線會將被驅散的恆星外層氣體電離。吸收紫外線的高能氣體殼層圍繞著中央的恆星發出朦朧的螢光,使其成為一個色彩鮮豔的行星狀星雲。 行星狀星雲在銀河系演化的化學上扮演關鍵性的角色,將恆星創造的元素擴散成為銀河系星際物質中的元素。在遙遠的星系內也觀察到行星狀星雲,收集它們的資訊有助於了解化學元素的豐度。 近年來,哈伯太空望遠鏡的影像顯示許多行星狀星雲有著極其複雜和各種各樣的形狀。大約只有五分之一呈現球形,而且其中大多數都不是球對稱。產生各種各樣形狀的功能和機制仍都不十分清楚,但是中央的聯星、恆星風和磁場都可能發揮作用。.

新!!: 圆规座和行星状星云 · 查看更多 »

食雙星

英仙座β星(大陵五),较亮者为主星、较暗者为伴星 食双星(),亦称食变星、光度双星、光变双星、交食双星,是指互相绕行轨道几乎在与观察者视线平面的平行方向、会彼此掩食而造成亮度发生周期性变化的双星系统。交食双星系统由两颗子星组成,一颗较亮的主星与一颗较暗的伴星,在相互引力作用下围绕公共质量中心运动,其互相绕行的轨道几乎在视线方向,这两颗恒星会彼此掩食(一颗子星从另一颗子星前面通过,如同月亮掩食太阳)而造成亮度发生有规律的、周期性变化的双星系统。 阿拉伯人很早就发现英仙座β星(大陵五)恒星亮度有周期性的变化,当时的天文学理论认为恒星亮度永恒不变,于是用鬼魔来解释亮度变化的现象,为之起名,“魔星”(),意即“食尸鬼”。1783年5月,年仅18岁的荷兰裔英国天文学者约翰·古德利克()在英国皇家学会发表了英仙座β星亮度光变的交食双星理论。他经过长期的观测,发现英仙座β星的亮度降到原亮度的三分之一时开始增亮,恢复到原亮度后又开始变暗,如此周而复始。他求出英仙座β星的亮度光变周期为2天20小时49分09秒(现代实际值为2天20小时48分56.5秒),并提出亮度光变是由亮度较暗的伴星交食于亮度较高的主星与观察者视线平面的平行方向的前面而造成的。.

新!!: 圆规座和食雙星 · 查看更多 »

西佛星系

西佛星系(Seyfert galaxies)是一类旋渦星系或者不規則星系,擁有非常亮的星系核。名字来自20世纪40年代深入研究这类星系的天文学家卡爾·基南·西佛(Carl Keenan Seyfert)。西佛星系属于活躍星系核的一类。.

新!!: 圆规座和西佛星系 · 查看更多 »

馬腹一

腹一(半人马座β,简称Beta Cen、β Cen)是一颗视星等为0.61的恒星,位于半人马座。其为恆星亮度列表中第12亮的恒星,亦是该星座第二亮的恒星(第一为南门二)。不过据现代观测手段,马腹一实为由多颗恒星组成的恆星系統。据依巴谷卫星所测量的视差计算,该系统距太阳系约为390光年(120秒差距)。 人们常用马腹一来寻找南十字座,进而确定方位。其与南门二所组成的连线指向南十字座的顶端——十字架一,而十字架一与十字架的底端——十字架二所组成的连线则指向南天极。 该天体于北纬30°以北均不可见。在中国只有部分南方省市能够观测到,其最佳观测时间为4月至5月。.

新!!: 圆规座和馬腹一 · 查看更多 »

角秒

角秒,又稱弧秒,是量度平面角的單位,即角分的六十分之一,符號為″。在不會引起混淆時,可簡稱作秒。「角秒」二字只限用於描述角度,不能於其他以「秒」作單位的情況使用(如時間)。.

新!!: 圆规座和角秒 · 查看更多 »

變星

變星是指亮度與電磁輻射不穩定的,經常變化並且伴隨著其他物理變化的恆星。 多數恆星在亮度上幾乎都是固定的。以我們的太陽來說,太陽亮度在11年的太陽週期中,只有0.1%變化。然而有許多恆星的亮度確有顯著的變化。這就是我們所說的變星。 變星可以大致分成以下兩種形態:.

新!!: 圆规座和變星 · 查看更多 »

豺狼座

豺狼座,是现代88星座之一,也是托勒密的48星座之一。此星座是南天星座之一,位於天秤座正南,天蠍座西南,也就是在南天亮星心宿二和南門雙星之間,可惜,它在赤緯-40°附近,北半球不大容易看到。它包含中国古代星座:顿顽,从官,骑官,车骑,积卒,柱,骑阵将军。 基本上本星座没有特别亮的星,但视星等在2-3等的星有30颗左右。亮度在第6等的星共70颗,其中包含几个双星和多星系统。最亮的星豺狼座α是蓝巨星;豺狼座β中國星名為騎官十。.

新!!: 圆规座和豺狼座 · 查看更多 »

超新星

超新星是某些恒星在演化接近末期时经历的一种剧烈爆炸。这种爆炸都极其明亮,过程中所突发的电磁辐射经常能够照亮其所在的整个星系,并可持续几周至几个月才会逐渐衰减变为不可见,而期间内一颗超新星所辐射的能量可以与太阳在其一生中辐射能量的总和相當。恒星通过爆炸会将其大部分甚至几乎所有物质以可高至十分之一光速的速度向外抛散,并向周围的星际物质辐射激波。这种激波会导致形成一个膨胀的气体和尘埃构成的壳状结构,这被称作超新星遗迹。超新星是星系引力波潛在的強大來源。初級宇宙射線有很大的比例來自超新星 。 超新星比新星更有活力。超新星的英文名稱為 supernova,nova在拉丁語中是“新”的意思,這表示它在天球上看上去是一顆新出現的亮星(其實原本即已存在,因亮度增加而被認為是新出現的);字首的super-是為了將超新星和一般的新星有所區分,也表示超新星具有更高的亮度。超新星這個名詞是沃爾特·巴德和弗裡茨·茲威基在1931年創造的。 超新星可以用兩種方式之一觸發:突然重新點燃核融合之火的簡併恆星,或是大質量恆星核心的重力塌陷。在第一種情況,一顆簡併的白矮星可以透過吸積從伴星那兒累積到足夠的質量,或是吸積或是合併,提高核心的溫度,點燃碳融合,並觸發失控的核融合,將恆星完全摧毀。在第二種情況,大質量恆星的核心可能遭受突然的引力坍縮,釋放重力位能,可以創建一次超新星爆炸。 最近一次觀測到銀河系的超新星是1604年的克卜勒之星(SN 1604);回顧性的分析已經發現兩個更新的殘骸 。對其它星系的觀測表明,在銀河系平均每世紀會出現三顆超新星,而且以現在的天文觀測設備,這些銀河超新星幾乎肯定會被觀測到 。它們作用的角色豐富了星際物質與高質量的化學元素。此外,來自超新星向外膨脹的激波可以觸發新恆星的形成。.

新!!: 圆规座和超新星 · 查看更多 »

黑洞

黑洞(英文:black hole)是根據廣義相對論所推論、在宇宙空間中存在的一種質量相當大的天體和星體(並非是一般認知的「洞」概念)。黑洞是由質量足够大的恒星在核聚变反应的燃料耗盡後,發生引力坍缩而形成。黑洞的質量是如此之大,它产生的引力场是如此之强,以致于大量可測物质和辐射都无法逃逸,就連传播速度極快的光子也逃逸不出來。由于类似热力学上完全不反射光线的黑体,故名黑洞。在黑洞的周圍,是一個無法偵測的事件視界,標誌著無法返回的臨界點,而在黑洞中心有一個密度趨近於無限的奇異點。 當恆星內部氫元素全部核融合完畢時,因燃料用完無法抵抗自身重力而開始向內塌陷,但隨著壓力越來越高,內部的重元素會重新開始燃燒導致瞬間膨脹,這時恆星的體積將暴增至原先的數十倍至百倍,這便是紅巨星,質量更大的恆星則會發生超新星爆炸,無論是紅巨星或是超新星,都會將外部物質全部吹飛,直到連重元素也燒完時,重力又會使得恆星繼續向內塌陷,最後形成一顆與月球差不多大小的白矮星,質量稍大的恆星則會形成中子星,會放出規律的電磁波,至於質量更大的恆星則會繼續塌陷,強大的重力使周圍的空間產生扭曲,最後形成一個密度每立方公分約一億噸的天體:「黑洞」。直至目前為止,所發現質量最小的黑洞大約有3.8倍太陽質量。 黑洞無法直接觀測,但可以藉由間接方式得知其存在與質量,並且觀測到它對其他事物的影響。藉由物體被吸入之前因高熱而放出紫外線和X射線的「邊緣訊息」,可以獲取黑洞的存在的訊息。推測出黑洞的存在也可藉由間接觀測恆星或星際雲氣團繞行黑洞軌跡,來取得位置以及質量。 黑洞是天文物理史上,最引人注目的題材之一,在科幻小說、電影甚至報章媒體經常可見將黑洞作為素材。迄今,黑洞的存在已得到天文學界和物理學界的绝大多數研究者所認同,並且天文界不時提出於宇宙中觀測到已存在的黑洞。 根據英國物理學者史蒂芬·霍金於2014年1月26日的論據:愛因斯坦的重力方程式的兩種奇點的解,分別是黑洞跟白洞。不過理論上黑洞應該是一種「有進沒出」的天體,而白洞則只能出而不能進。然而黑洞卻有粒子的輻射,所以不再適合稱其名為黑洞,而應該改其名為「灰洞」,先前認為黑洞可以毀滅資訊情報的看法,是他「最大的失誤」。.

新!!: 圆规座和黑洞 · 查看更多 »

輻射點

輻射點或視輻射點是流星雨在天空中的發源處,流星看起來似乎都來自該處(對行星上的觀測者)。例如,英仙座流星雨看起來就像是來自於英仙座。 觀測者看見流星在天空中飛過,往回追溯流星的來向,似乎集中在一個點(其實基本上是屬於平行的,不會有交集),這個點就稱為輻射點。如果一顆流星的路徑回溯之後不能指向輻射點,這顆流星就不屬於這個流星雨,稱為散亂流星或偶發流星。.

新!!: 圆规座和輻射點 · 查看更多 »

赤纬

赤纬(英文Declination;縮寫為Dec;符號為δ)是天文学中赤道座標系統中的两个坐标数据之一,另一个坐标数据是赤经。赤纬与地球上的纬度相似,是纬度在天球上的投影。赤纬的单位是度,更小的单位是“角分”和“角秒”,天赤道为0度,天北半球的赤纬度数为正数,天南半球的赤纬的度数为负数。天北极为+90°,天南极为-90°。值得注意的是正号也必须标明。 例如,织女星的确切赤纬(曆元2000.0)为+38°47'01"。 在观测者天顶的赤纬与該觀測地的纬度相同。.

新!!: 圆规座和赤纬 · 查看更多 »

赤经

赤經(英文Right ascension;縮寫為RA;符號為α)是天文學使用在天球赤道座標系統內的座標值之一,通过天球两极并与天赤道垂直,另一個座標值是赤緯。.

新!!: 圆规座和赤经 · 查看更多 »

赤道坐標系統

赤道坐標系統,又作赤道座標系統,大概是使用得最廣泛的天球坐標系統,他的元素是.

新!!: 圆规座和赤道坐標系統 · 查看更多 »

银河系

銀河星系(古稱银河、天河、星河、天汉、銀漢等),是一個包含太陽系 的棒旋星系。直徑介於100,000光年至180,000光年。估計擁有1,000億至4,000億顆恆星,並可能有1,000億顆行星。太陽系距離銀河中心約26,000光年,在有著濃密氣體和塵埃,被稱為獵戶臂的螺旋臂的內側邊緣。在太陽的位置,公轉週期大約是2億4,000萬年。從地球看,因為是從盤狀結構的內部向外觀看,因此銀河系呈現在天球上環繞一圈的帶狀。 銀河系中最古老的恆星幾乎和宇宙本身一樣古老,因此可能是在大爆炸之後不久的黑暗時期形成的。在10,000光年內的恆星形成核球,並有著一或多根棒從核球向外輻射。最中心處被標示為強烈的電波源,可能是個超大質量黑洞,被命名為人馬座A*。在很大距離範圍內的恆星和氣體都以每秒大約220公里的速度在軌道上繞著銀河中心運行。這種恆定的速度違反了开普勒動力學,因而認為銀河系中有大量不會輻射或吸收電磁輻射的質量。這些質量被稱為暗物質。 銀河系有幾個衛星星系,它們都是本星系群的成員,並且是室女超星系團的一部分;而它又是組成拉尼亞凱亞超星系團的一部分。整個銀河系對銀河系外的參考坐標系以大約每秒600公里的速度在移動。.

新!!: 圆规座和银河系 · 查看更多 »

銪(Europium)是一種化學元素,符號為Eu,原子序為63。元素以歐洲(Europe)命名。銪是一種較堅硬的銀白色金屬,在空氣和水中容易氧化。它屬於典型的鑭系元素,氧化態通常為+3,但其+2態也並不鮮見。所有氧化態為+2的銪化合物都具有輕微的還原性。銪在生物體中沒有重要的功用,和其他重金屬相比毒性較低。銪的大部份應用都採用了其化合物的磷光特性,例如電視機的磷光體以及歐羅(欧元)紙幣的防偽磷光體等。.

新!!: 圆规座和铕 · 查看更多 »

锶(Strontium,舊譯作鎴)是一种化学元素,它的化学符号是Sr,它的原子序数是38,屬於周期表的2A族,是一种银白色有光泽的碱土金属。 锶是碱土金属中丰度最小的元素。在自然界主要以化合态存在,主要的矿石有天青石(SrSO4),(SrCO3)。1787年,由英國人霍普發現,亦經過他的朋友克勞福德確認。1807年英国化学家戴维电解碳酸锶时发现了金属锶。工业用电解熔融的氯化锶制取锶。 锶的化学性质活泼,加热到熔点(769℃)时即燃烧,呈红色火焰,生成氧化锶(SrO),在加压条件下跟氧气化合生成过氧化锶(SrO2)。跟卤素、硫、硒等容易化合。加热时跟氮化合生成氮化锶(Sr3N2)。加热时跟氢化合生成氢化锶(SrH2)。跟盐酸、稀硫酸剧烈反应放出氢气。常温下跟水反应生成氢氧化锶和氢气。锶在空气中会转黄色。 锶元素广泛存在在矿泉水中。某些锶化合物似乎显示它们也许能促进骨生长的证据,但并没有得到证明。 锶和碳酸锶均是根据Strontian来命名的,这是苏格兰的一个小村庄,其附近的矿物质Strontian于1790年首先由Adair Crawford和William Cruickshank发现。19世纪自甜菜中提取糖料的发明是其最大的一个应用(参见strontian工艺)。锶化合物如今主要用于生产电视机中的阴极射线管,以其他显示法代替使用阴极射线管的做法正在改变锶的总消费量。.

新!!: 圆规座和锶 · 查看更多 »

脉冲星

脉冲星(Pulsar)是中子星的一種,為會週期性發射脈衝訊號的星體。.

新!!: 圆规座和脉冲星 · 查看更多 »

金星

金星(英語、拉丁語:Venus,天文符號:♀),在太陽系的八大行星中,是從太陽向外的第二顆行星,軌道公轉週期為224.7地球日,它沒有天然的衛星。在中國古代稱為太白、明星或大囂,另外早晨出現在東方稱啟明,晚上出現在西方稱長庚。到西漢時期,《史記‧天官書》作者天文學家司馬遷從實際觀測發現太白為白色,與「五行」學說聯繫在一起,正式把它命名為金星。它的西文名稱源自羅馬神話的愛與美的女神,维纳斯(Venus),古希腊人称为阿佛洛狄忒,也是希腊神话中爱与美的女神。金星的天文符号用维纳斯的梳妆镜来表示。 它在夜空中的亮度僅次於月球,是第二亮的天然天體,視星等可以達到 -4.7等,足以照射出影子。由於金星是在地球內側的內行星,它永遠不會遠離太陽運行:它的離日度最大值為47.8°。 金星是一顆類地行星,因為它的大小、質量、體積與到太陽的距離,均與地球相似,所以經常被稱為地球的姊妹星。然而,它在其它方面則明顯的與地球不同。它有著四顆類地行星中最濃厚的大氣層,其中超過96%都是二氧化碳,行星表面的大氣壓力是地球的92倍。表面的平均溫度高達,是太陽系最熱的行星,比最靠近太陽的水星還要熱。金星沒有將碳吸收進入岩石的碳循環,似乎也沒有任何有機生物來吸收生物量的碳。金星被一層高反射、不透明的硫酸雲覆蓋著,阻擋了來自太空中,可能抵達表面的可見光。它在過去可能擁有海洋,並且外觀與地球極為相似,但是隨著失控的溫室效應導致溫度上升而全部蒸發掉了B.M. Jakosky, "Atmospheres of the Terrestrial Planets", in Beatty, Petersen and Chaikin (eds), The New Solar System, 4th edition 1999, Sky Publishing Company (Boston) and Cambridge University Press (Cambridge), pp.

新!!: 圆规座和金星 · 查看更多 »

#重定向 铬.

新!!: 圆规座和鉻 · 查看更多 »

苍蝇座

苍蝇座(Musca)是位于南天深空的一个小星座,远离黄道的南天,是荷兰天文学家皮特鲁斯·普兰修斯根据荷兰航海家和的天文观测结果创立的星座,最早报道在由普兰修斯和约道库斯·洪第乌斯在1597年(或1598年间)制作的一架直径为35厘米的天球仪上,1603年,德国天文学家约翰·拜耳制作的测天图报道了这个星座,这是苍蝇座第一次出现在天图上。它原来叫做Apis(蜜蜂座),直到18世纪经过拉卡伊之手它才演化为苍蝇座。在北半球,这个星座位于地平线以下。 苍蝇座的许多亮星属于天蝎-半人马星协,包括蜜蜂三、蜜蜂一、苍蝇座γ、、苍蝇座η(有可能),以及HD 100546,这是一颗蓝-白赫比格Ae/Be星,周围环绕着含有行星、岩屑盘,岩屑盘里含有行星、褐矮星,可能含有原行星。苍蝇座含有两颗肉眼可见的造父变星,含有三星系统苍蝇座θ,其中最亮的恒星是一颗沃尔夫–拉叶星。.

新!!: 圆规座和苍蝇座 · 查看更多 »

造父变星

造父變星(Cepheid,或)的成員是一種非常明亮的變星,其變光的光度和脈動週期有著非常強的直接關聯性。造父變星是建立銀河和河外星系距離標尺的可靠且重要的標準燭光。 造父變星分成幾個子類,表現出截然不同的質量、年齡、和演化歷史:經典造父變星、第二型造父變星、異常造父變星、和矮造父變星。 造父變星的名稱源自在仙王座的仙王座δ星,在1784年被约翰·古德利克發現是一顆變星。由於是這種類型變星中被確認的第一顆,而它的中文名稱是造父一,因此得名。造父一也是驗證周光關係時特別重要的一顆造父變星,因為他的距離是造父變星中最精確的,這要歸功於它的成員都在星團之中de Zeeuw, P. T.; Hoogerwerf, R.; de Bruijne, J. H. J.; Brown, A. G. A.; Blaauw, A.(1999).

新!!: 圆规座和造父变星 · 查看更多 »

G型主序星

黃矮星,在天文學上的正式名稱為GV恆星,是光譜型態為G,發光度為V的主序星。這一類恆星的質量大約在0.8至1.0太陽質量,表面的有效溫度在5,300至6,000K, G. M. H. J. Habets and J. R. W. Heintze, Astronomy and Astrophysics Supplement 46 (November 1981), pp.

新!!: 圆规座和G型主序星 · 查看更多 »

Harvard University

#重定向 哈佛大学.

新!!: 圆规座和Harvard University · 查看更多 »

HD 129445

HD 129445是一顆位於圓規座的黃矮星,距離地球約219光年。該恆星因為可見光絕對星等和金屬量與太陽類似,被麥哲倫行星搜尋計畫列入觀測對象。該計畫對HD 129445進行17次徑向速度觀測以獲得完整軌道週期資料,因此發現了行星HD 129445 b。.

新!!: 圆规座和HD 129445 · 查看更多 »

HD 129445 b

HD 129445 b是一顆位於圓規座的離心木星,距離地球約220光年,由麥哲倫行星搜尋計畫於2010年發現。.

新!!: 圆规座和HD 129445 b · 查看更多 »

HD 134060

HD 134060,又名CP-60 5656,SAO 253043、HR 5632,是一颗圓規座的恒星,视星等为6.3,位于銀經318.81,銀緯-2.92,其B1900.0坐标为赤經,赤緯。.

新!!: 圆规座和HD 134060 · 查看更多 »

NGC 5315

NGC 5315是一个位于圆规座的行星状星云。视星等为9.8,包裹着一颗14.2等的恒星。位于圆规座α西南5.2度处。该星云的盘状特征要放大200倍才可见。.

新!!: 圆规座和NGC 5315 · 查看更多 »

NGC 5823

NGC 5823是在南天星座圓規座的邊界,靠近並擴散至豺狼座的一個疏散星團。它是詹姆士鄧路普在1826年發現的。.

新!!: 圆规座和NGC 5823 · 查看更多 »

O型主序星

O型主序星(O V) 是是光譜為O,亮度為V,在主序帶(氫燃燒)上的恆星。這類恆星的質量是太陽的15至90倍太陽質量,表面溫度在30,000至52,000 K。這一類恆星非常罕見,估計在整個銀河系中只有20,000顆。例子包括參宿增一A(獵戶座σA)和車府增十一(蝎虎座10) 。.

新!!: 圆规座和O型主序星 · 查看更多 »

PSR B1509-58

PSR B1509-58是一顆脈衝星,位在圓規座,1982年由愛因斯坦衛星發現,距離地球大約17,000光年遠。它的年齡約1,700歲,附近的星雲橫跨約150光年。 NASA描述這顆脈衝星類似「一隻宇宙之手」。.

新!!: 圆规座和PSR B1509-58 · 查看更多 »

SIMBAD

SIMBAD(Set of Identifications, Measurements, and Bibliography for Astronomical Data)是由法國數據資料中心負責和維護的一個天文資料庫,其設置的功能在確認、測量太陽系外天體和收錄相關文獻。 SIMBAD是由恆星確認目錄(Catalog of Stellar Identifications,CSI)和恆星指引書目合併創造出來的。在1979年前,它們只存在於默冬電腦中心。然後,它們額外的從其他目錄和學術文獻擴大了資料來源。在1981年首度提供了網上互動式版本,舊式被稱為V2的版本。V3的版本使用C語言開發,在斯特拉斯堡天文台的UNIX電腦工作站上執行。2006年秋季,在資料庫中看見釋出完全由JAVA(電腦程式語言)撰寫和支援的軟體的V4版本,現在儲存在PostgreSQL。 截至2011年10月11日,SIMBAD以15,224,536個不同的名稱,以及257,763 參考書目和8,313,370書目引文。 小行星(4692),,被命名為(4692) SIMBAD。.

新!!: 圆规座和SIMBAD · 查看更多 »

SN 185

SN 185是出現於公元185年的一顆超新星,位置在圓規座和半人馬座之間,靠近南門二的附近。這顆客星被中國天文學家紀錄在《後漢書》內,並且也可能記錄在羅馬帝國的文獻中。 他在夜晚可以見到的時間長達8個月,相信是人類紀錄到的第一顆超新星。建议取名为「南门客星」。 氣體的殼層RCW 86,距離估計約為三千秒差距,被認為是這顆超新星事件的殘骸,近來的X射線研究與預期的年代有很好的吻合。.

新!!: 圆规座和SN 185 · 查看更多 »

X射线

--(X-ray),又被称为爱克斯射线、艾克斯射线、伦琴射线或--,是一种波长范围在0.01纳米到10纳米之间(对应频率范围30 PHz到30EHz)的电磁辐射形式。X射线最初用于医学成像诊断和X射线结晶学。X射线也是游離輻射等这一类对人体有危害的射线。 X射線波長範圍在較短處與伽馬射線較長處重疊。.

新!!: 圆规座和X射线 · 查看更多 »

暗星雲

暗星雲(Dark nebula 或 Absorption nebula)是本身不會發光的一種星際雲,內部極濃密的氣體和微塵使這類星雲具有很大的密度,足以遮蔽來自後方發射星雲或反射星雲(例如馬頭星雲),或是遮蔽背景的恆星(例如煤袋星雲)。因此暗星雲通常只有在附近有明亮的星雲時,才會被明顯觀測到。 當宇宙中某個區域的物質密度特別高時,其形成的重力會使愈來愈多的氣體和微塵聚集在一起,長時間下便會形成暗星雲。暗星雲沒有外型、大小和範圍上的明確定義,有時會形成複雜的蜒蜒形狀;大型的暗星雲直徑可達數十光年,以肉眼就能看見,例如從地球看見的大裂縫,便是由遮蔽銀河系中央眾多恆星的光的一連串重疊暗星雲所組成。 天文學上的消光通常來自大的分子雲內溫度最低、密度最高部份的星際塵埃顆粒。大而複雜的暗星雲聚合體經常與巨大的分子雲聯結在一起,小且孤獨的暗星雲被稱為包克球。 由於暗星雲內部的物質密度極高,對於形成新恆星而言含有豐富的原料,因此常是新恆星的誕生場所。暗星雲內形成的新恆星會透過恆星風(如太陽風),驅散周圍的氣體和微塵,而暗星雲內的物質也會因此愈漸稀薄,最後常會成為被內部恆星照亮的發射星雲或反射星雲。除了恆星形成外,暗星雲內也常是邁射的來源場所。.

新!!: 圆规座和暗星雲 · 查看更多 »

恒星光谱

在天文學,恆星分類是將恆星依照光球的溫度分門別類,伴隨著的是光譜特性、以及隨後衍生的各種性質。根據維恩定律可以用溫度來測量物體表面的溫度,但對距離遙遠的恆星是非常困難的。恆星光譜學提供了解決的方法,可以根據光譜的吸收譜線來分類:因為在一定的溫度範圍內,只有特定的譜線會被吸收,所以檢視光譜中被吸收的譜線,就可以確定恆星的溫度。早期(19世紀末)恆星的光譜由A至P分為16種,是目前使用的光譜的起源。 恒星光谱分类 20世纪初,美国哈佛大学天文台对50万颗恒星进行了光谱研究。他们根据恒星不同的谱线进行了分类,结果发现它们与颜色也有关系.

新!!: 圆规座和恒星光谱 · 查看更多 »

恆星系統

恆星系統或恆星系是少數幾顆恆星受到引力的拘束而互相環繞的系統,為數眾多的恆星受到引力的約束一般稱為“星團”或“星系”,但是概括來說都可以稱為恆星系統。恆星系統有時也會用在單獨但有更小的行星系環繞的恆星。.

新!!: 圆规座和恆星系統 · 查看更多 »

橙矮星

橙矮星 ,也就是K型主序星(KV),是主序帶(以氫為燃料)上,光譜類型為K,亮度分類為V的恆星。這些恆星的大小介於M-型主序星、亮度分類為V,和G-型主序星、亮度分類為V的恆星之間,質量是太陽質量的0.5至0.8倍,表面溫度在3,900至5,200K。, G. M. H. J. Habets and J. R. W. Heintze, Astronomy and Astrophysics Supplement 46 (November 1981), pp.

新!!: 圆规座和橙矮星 · 查看更多 »

次巨星

次巨星 次巨星是有著與正常主序星(矮星)相同的光譜類型,但比較明亮,卻又不如巨星明亮的恆星。次巨星這個名詞適用於恆星演化的一個階段,是一個光譜的特定光度分類。.

新!!: 圆规座和次巨星 · 查看更多 »

水準儀

水準儀,俗稱水平鏡,是一種量測觀測點高程差的測量仪器,主要用於工程現場之水準測量。 水準儀之基本構造主要可分為三大部份: 一為望遠鏡,或稱鏡筒,其主要功能為觀測目標。可細分為物鏡、目鏡、十字絲三部份。物鏡收集遠方光線;目鏡將影像轉正;十字絲則用以照準目標。 二為水準器及轉盤。水準器可顯示儀器之水平狀態,其中包含至少一圓形水準器。較精密的水準儀則輔以兩支以上的管狀水準器以提高精密度。轉盤使儀器得以360度水平旋轉,以方便觀測者在維持儀器水平的狀況下轉動鏡筒進行觀測。但实际上近年来大部分使用的都为自动安平水准仪,不需要管水准气泡的辅助了。 三為基座,或稱底座,主要功能為承載鏡筒與水準器,並提供水準儀與腳架之連結。本部之腳螺旋(或稱踵定螺旋或改平螺旋),可以調校水準儀的水平狀態。.

新!!: 圆规座和水準儀 · 查看更多 »

澳洲

#重定向 澳大利亚.

新!!: 圆规座和澳洲 · 查看更多 »

木星

|G1.

新!!: 圆规座和木星 · 查看更多 »

木星質量

木星質量(Jupiter mass)是一個主要用於量度行星質量的單位,相等於木星的質量,即1.8986 × 1027 kg,又或 317.83 地球質量。木星質量主要用於量度氣體巨星的質量,例如:太陽系的外行星、或太陽系外行星,亦可用於褐矮星。木星質量的符號是MJ。 在太陽系,以下列出各個外行星若以木星質量作單位時的質量:.

新!!: 圆规座和木星質量 · 查看更多 »

星座

弗雷德里克·德·威特在1670年绘制的星座图 星座是指天上一群群的恒星组合。自从古代以来,人类便把三五成群的恒星与他们神话中的人物或器具联系起来,称之为“星座”。星座几乎是所有文明中确定天空方位的手段,在航海领域应用颇广。对星座的划分完全是人为的,不同的文明对于其划分和命名都不尽相同。星座一直没有统一规定的精确边界,直到1930年,國際天文學聯合會为了统一繁杂的星座划分,用精確的邊界把天空分為八十八個正式的星座,使天空多数恆星都屬於某一特定星座。這些正式的星座大多都以中世紀傳下來的古希臘傳統星座為基礎。与此相对地,有一些广泛流传但是沒有被认可为正式星座的星星的组合叫做星群,例如北斗七星(参见恒星统称列表)。 在三維的宇宙中,這些恆星其實相互間不一定有實際的關係,不過其在天球這一個球殼面上的位置相近,而其实它们之间可能相距很远。如果我们身处银河中另一太阳系,我们看到的星空将会完全不同。自古以來,人们对于恆星的排列和形狀很感興趣,並很自然地把一些位置相近的星聯繫起來組成星座。.

新!!: 圆规座和星座 · 查看更多 »

昆士蘭州

昆士蘭--(Queensland,縮寫:QLD,簡稱昆--),位於澳洲的東北部,論面積為澳洲的第二大州,人口則排名全澳第三。據2017年3月統計,昆士蘭人口已突破490萬人,约占全國總人口的20.0%。 昆士蘭第一大城為首府布里斯本,人口118.03萬(2016年9月數據),大都會區人口約236萬。第二大城是觀光重鎮黃金海岸,人口56.76萬(2016年數據)。澳大利亚前30大城市有個城市位于昆士蘭州。由於昆士蘭有相當廣大的地區位於熱帶、盛產礦物與蔬果,州民熱愛運動,素有“陽光之州”(Sunshine State)的美稱。 昆州以農業為主要貿易產品,為澳洲牛奶,咖啡、煙草、花生、木材、豆類、蘋果、香蕉、鳳梨、木瓜、荔枝、芒果、穀物、甘蔗、棉花等產品的主要產地。 州內礦產資源豐富,產量達全澳的24%。主要有鉛、鋅、銅、鈾、鋁礬土、錳、銀、金、鉬、煤、鐵礦石、石油、天然氣、磷酸鹽、红金石和蛋白石等。.

新!!: 圆规座和昆士蘭州 · 查看更多 »

流星雨

流星雨是在夜空中有許多的流星從天空中一個所謂的輻射點發射出來的天文現象。這些流星是宇宙中被稱為流星體的碎片,在平行的軌道上運行時以極高速度投射進入地球大氣層的流束。大部分的流星體都比沙礫還要小,因此幾乎所有的流星體都會在大氣層內被銷毀,不會擊中地球的表面;能夠撞擊到地球表面的碎片稱為隕石。數量特別龐大或表現不尋常的流星雨會被稱為流星突出或流星暴,可能會每小時出現的流星會超過1,000顆以上。.

新!!: 圆规座和流星雨 · 查看更多 »

新星

新星是激变变星的一类,是由吸積在白矮星表面的氫造成劇烈的核子爆炸的現象。这类星通常原本都很暗,难以发现,爆发时突然增亮,被认为是新产生的恒星,因此而得名。新星按光度下降速度分为快新星(NA)、中速新星(NAB)、慢新星(NB)和甚慢新星(NC),爆发时亮度会增加几万、几十万甚至几百万倍,持续几星期或几年。但不能和Ia超新星或其它恆星的爆炸混淆,包括加州理工學院在2007年5月首度發現的發光紅新星。 目前在银河系中已发现超过200颗新星。.

新!!: 圆规座和新星 · 查看更多 »

旋轉橢球變星

旋轉橢球變星(Rotating ellipsoidal variables)是變星的一種。這種變星是主星和伴星相當接近的聯星系統,因此成員星都是橢球狀。這種變星和食變星不同,但是會因為輻射的發射面積改變而造成視星等的變化。一般來說這種變星的視星等變化不超過0.1。 旋轉橢球變星中最亮的是室女座的角宿一。.

新!!: 圆规座和旋轉橢球變星 · 查看更多 »

重定向到这里:

圓規座

传出传入
嘿!我们在Facebook上吧! »