目录
多極展開
在物理學裏,多極展開方法廣泛應用於涉及於質量分佈產生的重力場、電荷分佈產生的電勢或電場、電流分佈產生的磁向量勢和磁場、電磁波的傳播等等問題。使用多極展開,重力場或電勢等等,都可以表達為單極項目、偶極項目、四極項目、八極項目等等的疊加。一個典型範例是,從原子核的外部多極矩與電子軌域的內部多極矩之間的交互作用能量,計算求得原子的原子核外多極矩。由於從原子核的外多極矩可以給出原子核內部的電荷分佈,物理學者可以研究原子核的形狀。 做理論運算時,在允許誤差範圍內,時常可以只取多極展開的最低階的幾個非零項目,忽略其它項目,因為它們的數值超小。.
查看 四極和多極展開
二端口网络
二端口网络(two-port network)又称双端口网络、双口网络,是四端子网络(四端网络)的一种,是具有2个端口的电路或装置,端口与电路内部网络相连接。一个端口由2个端子组成,当这2个端子满足端口条件,即一个端子流入的电流等于另一个端子流出的电流时,则这2个端子就构成了一个端口,换句话说,也就是相同的电流从同一端口流入并流出。Gray,§3.2,第172页Jaeger,§10.5、§13.5、§13.8二端口网络的实例包括三极管的小信号模型(如混合π模型)、电子滤波器以及阻抗匹配网络。被动二端口网络的分析是互易定理的副产物,最初由洛伦兹提出。 二端口网络能将电路的整体或一部分用它们相应的外特性参数来表示,而不用考虑其内部的具体情况,这样被表示的电路就成为具有一组特殊性质的“黑箱”,从而就能抽象化电路的物理组成,简化分析。任意具有4个端子的线性电路都可以变换成二端口网络,且满足不含独立源的条件和端口条件。 描述二端口网络的参数不只有一组,常用的几组参数是分别为阻抗参数Z、导纳参数Y、混合参数h、g和传输参数,每组参数都在下文中有描述。这几组参数只能用於线性网络,因为它们导出的条件是假定任何给定的电路情况都是各种短路和开路情况的线性叠加。这几组参数通常用矩阵表示法表示,通过以下变量建立关系: 如图1所示。这些电流和电压变量在低频到中频情况下是非常有用的。在高频情况下(如微波频率),使用功率和能量变量会更合适,这时二端口电流-电压法就应该由基於S的方法代替。 请注意,四端子网络(four-terminal network)等同於四端网络(quadripole,注意与四极子(quadrupole)区分),但不等同於二端口网络,因为只有2个端子满足流入一个端子的电流等於流出另一个端子的电流时,即满足端口条件时,才能称这2个端子为一个端口,而四端子网络的端子可能无法满足端口条件。因此对於一个四端子网络,只有当连接到其内部电路的2对端子满足端口条件时,这个四端子网络才是一个二端口网络。.
查看 四極和二端口网络
張量
張量(tensor)是一个可用來表示在一些向量、純量和其他張量之間的線性關係的多线性函数,這些線性關係的基本例子有內積、外積、線性映射以及笛卡儿积。其坐标在 n 維空間內,有 n^r個分量的一種量,其中每個分量都是坐標的函數,而在坐標變換時,這些分量也依照某些規則作線性變換。r稱為該張量的秩或階(与矩阵的秩和阶均无关系)。 在同构的意义下,第零階張量(r.
查看 四極和張量
克罗内克函数
#重定向 克罗内克δ函数.
查看 四極和克罗内克函数
勒让德多项式
数学上,勒让德函数指以下勒让德微分方程的解: 为求解方便一般也写成如下施图姆-刘维尔形式: 上述方程及其解函数因法国数学家阿德里安-马里·勒让德而得名。勒让德方程是物理学和其他技术领域常常遇到的一类常微分方程。当试图在球坐标中求解三维拉普拉斯方程(或相关的其他偏微分方程)时,问题便会归结为勒让德方程的求解。 勒让德方程的解可写成标准的幂级数形式。当方程满足 |x| < 1 时,可得到有界解(即解级数收敛)。并且当n 为非负整数,即n.
查看 四極和勒让德多项式
四极离子阱
四极离子阱是一种使用交变电场来束缚带电粒子的离子阱,也称无线射频 (RF)阱或者保罗离子阱。沃尔夫冈·保罗发明了这种装置并因此分享了1989年的诺贝尔物理学奖。它一般用于质谱仪的一个组件或俘获离子量子计算机。.
查看 四極和四极离子阱
球多極矩
對於與源位置的距離呈反比的位勢,其球多極展開所得到的係數稱為球多極矩。例如,電勢、磁向量勢、重力勢等等,都是這種位勢。.
查看 四極和球多極矩
拉普拉斯展开
在数学中,拉普拉斯展开(或称拉普拉斯公式)是一个关于行列式的展开式。将一个n×n矩阵B的行列式进行拉普拉斯展开,即是将其表示成关于矩阵B的某一行(或某一列)的n个元素的(n-1)×(n-1)余子式的和。行列式的拉普拉斯展开一般被简称为行列式按某一行(或按某一列)的展开。由于矩阵B有n行n列,它的拉普拉斯展开一共有2n种。拉普拉斯展开的推广称为拉普拉斯定理,是将一行的元素推广为关于k行的一切子式。它们的每一项和对应的代数余子式的乘积之和仍然是B的行列式。研究一些特定的展开可以减少对于矩阵B之行列式的计算,拉普拉斯公式也常用于一些抽象的推导中。.
查看 四極和拉普拉斯展开
另见
引力
- N体问题
- 万有引力常数
- 人工重力
- 卡文迪什實驗
- 地球引力
- 地貌学
- 失重
- 廣義相對論入門
- 引力
- 引力势能
- 引力波天文学
- 引力结合能
- 恆星動力學
- 托尔曼度规
- 月球運動論
- 榭赫倫實驗
- 標準重力
- 殼層定理
- 洛希極限
- 洛希瓣
- 潮汐力
- 爱因斯坦-希尔伯特作用量
- 白洞
- 自由落體
- 虫洞
- 表面重力
- 負質量
- 轨道 (力学)
- 重力位
- 重力加速度
- 重力火車