徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

同調代數

指数 同調代數

同調代數是數學的一個分支,它研究同調與上同調技術的一般框架。.

55 关系: 埃米·诺特偏微分方程同倫同胚塞缪尔·艾伦伯格多面体大卫·希尔伯特外微分导出范畴導出函子局部環不變量理論交換代數代数几何代数拓扑代數幾何基礎代數幾何討論班代數數論微分形式微分流形儒勒·昂利·庞加莱凝聚層內射對象與投射對象內射分解內射維度、投射維度與同調維度內射模群上同調群表示論環的局部化牛津大学Ext函子非交換幾何諾特環譜序列诺曼·斯廷罗德貝蒂數黎曼曲面范畴论阿貝爾範疇阿贝尔群Tor函子投射分解投射模李代數李群正合函子...正則局部環波恩哈德·黎曼斯托克斯定理数学拟同构 扩展索引 (5 更多) »

域(field)可以指:.

新!!: 同調代數和域 · 查看更多 »

埃米·诺特

埃米·诺特(Emmy Noether,,)是20世纪初一个才华洋溢的德国数学家,研究领域为抽象代数和理论物理学。她善于藉透彻的洞察建立优雅的抽象概念,再将之漂亮地形式化。被帕维尔·亚历山德罗夫,阿尔伯特·爱因斯坦,讓·迪厄多內,赫尔曼·外尔和诺伯特·维纳形容为数学史上最重要的女人。.

新!!: 同調代數和埃米·诺特 · 查看更多 »

偏微分方程

偏微分方程(partial differential equation,缩写作PDE)指含有未知函数及其偏导数的方程。描述自变量、未知函數及其偏导數之間的關係。符合這個關係的函数是方程的解。 偏微分方程分為線性偏微分方程式與非線性偏微分方程式,常常有幾個解而且涉及額外的邊界條件。.

新!!: 同調代數和偏微分方程 · 查看更多 »

同倫

在數學中,同倫(Homotopy)的概念在拓撲上描述了兩個對象間的「連續變化」。.

新!!: 同調代數和同倫 · 查看更多 »

同胚

在拓扑学中,同胚(homeomorphism、topological isomorphism、bi continuous function)是两个拓扑空间之间的双连续函数。同胚是拓扑空间范畴中的同构;也就是说,它们是保持给定空间的所有拓扑性质的映射。如果两个空间之间存在同胚,那么这两个空间就称为同胚的,从拓扑学的观点来看,两个空间是相同的。 大致地说,拓扑空间是一个几何物体,同胚就是把物体连续延展和弯曲,使其成为一个新的物体。因此,正方形和圆是同胚的,但球面和环面就不是。有一个笑话是说,拓扑学家不能区分咖啡杯和甜甜圈,这是因为一个足够柔软的甜甜圈可以捏成咖啡杯的形状(见图)。.

新!!: 同調代數和同胚 · 查看更多 »

塞缪尔·艾伦伯格

塞缪尔·艾伦伯格(Samuel Eilenberg,)是一个波兰-美国数学家,犹太血统。他出生于俄罗斯帝国时期的华沙(现在为波兰),逝于美国纽约市,他是纽约哥伦比亚大学的教授,在那里度过了大部分职业生涯。 他于1936年在华沙大学获得哲学博士学位。他的论文导师是Karol Borsuk。他主要研究兴趣是代数拓扑。他与诺曼·斯廷罗德一起建立了同调论的公理化,与桑德斯·麦克兰恩合作公理化了同调代数。在这个过程中,艾伦伯格与 Mac Lane 创立了范畴论。 艾伦伯格加入了尼古拉·布尔巴基小组,与昂利·嘉当合作,1956年著有《同调代数 Homological Algebra》,这是一部经典著作。 其后他主要工作是纯粹范畴论,是该领域的奠基者之一。Eilenberg swindle(或 telescope)是将裂项消元法想法运用于投射模的一个构造。 艾伦伯格也写了一部关于自动机理论的重要著作。X-机器(X-machine),是由艾伦伯格1974年引进的一种形式的自动机。.

新!!: 同調代數和塞缪尔·艾伦伯格 · 查看更多 »

多面体

多面體(polyhedron)是指三維空間中由平面和直邊組成的幾何形體。英文 polyhedron 源於古希臘語 πολύεδρον,由poly-(詞根 πολύς,多)和 -edron(έδρα,基底、座、面)構成,即意為「多面體」。 然而,「由平面和直邊組成的有界體」的定義方式並不明確,對現代數學而言更是不合格。克羅埃西亞數學家 Grünbaum 曾評論道:“多面體理論的原罪可追溯至歐幾里得,還有之後的克卜勒、龐索、柯西……各個時期……數學家們都未能準確定義何謂『多面體』。”自此,數學家雖以特定說法對「多面體」訂定了嚴謹的定義,但任一種卻都無法完全兼容其他定義方式。.

新!!: 同調代數和多面体 · 查看更多 »

大卫·希尔伯特

大卫·希尔伯特(David Hilbert,),德国数学家,是19世纪和20世纪初最具影响力的数学家之一。希尔伯特1862年出生于哥尼斯堡(今俄罗斯加里宁格勒),1943年在德国哥廷根逝世。他因为发明了大量的思想观念(例:不变量理论、、希尔伯特空间)而被尊为伟大的数学家、科学家。 他提出了希尔伯特空间的理論,是泛函分析的基礎之一。他热忱地支持康托的集合论与无限数。他在数学上的领导地位充分体现于:1900年,在巴黎的国际数学家大会提出的一系列问题(希尔伯特的23个问题)为20世纪的许多数学研究指出方向。 希尔伯特和他的学生为形成量子力学和广义相对论的数学基础做出了重要的贡献。他还是证明论、数理逻辑、区分数学与元数学之差别的奠基人之一。.

新!!: 同調代數和大卫·希尔伯特 · 查看更多 »

外微分

数学上,微分拓扑的外微分算子,把一个函数的微分的概念推广到更高阶的微分形式的微分。它在流形上的积分理论中极为重要,并且是德拉姆和Alexander-Spanier上同调中所使用的微分算子。其现代形式是由嘉当发明的。.

新!!: 同調代數和外微分 · 查看更多 »

导出范畴

导出范畴是同调代数中的一种构造。导出范畴的概念推广并深化了传统同调代数中导出函子的理论。这一构造是格罗滕迪克在20世纪60年代初提出的,他的学生让-路易·韦迪耶在其指导下发展了相关理论。今天,导出范畴被广泛应用于代数几何和D-模理论。.

新!!: 同調代數和导出范畴 · 查看更多 »

導出函子

在同調代數中,阿貝爾範疇間的某類函子可以「求導」,以獲得相應的導出函子。此概念可以融貫數學中許多領域裡的具體構造。.

新!!: 同調代數和導出函子 · 查看更多 »

局部環

在數學中,局部環是只有一個極大理想的交換含--環。 局部環的概念由 Wolfgang Krull 於1938年引入,稱之為 Stellenringe,英譯 local ring 源自扎裡斯基。.

新!!: 同調代數和局部環 · 查看更多 »

不變量理論

不變量理論是數學的一個分支,它研究群在代數簇上的作用。不變量理論的古典課題是研究在線性群作用下保持不變的多項式函數。 對於有限群,不變量理論與伽羅瓦理論有密切聯繫,一個較早的結果涉及了對稱群 S_n 在多項式環 F 上的作用:S_n 作用下的不變量構成一個子環,由基本對稱多項式生成,由於基本對稱多項式彼此代數獨立,此不變量環本身也同構於另一多項式環。Chevalley-Shephard-Todd 定理刻劃了其不變量環同構於多項式環的有限群。晚近的研究則更關切算法問題,例如計算不變量環的生成元,或給出其次數的上界。 對於一般的代數群,其不變量理論與線性代數、二次型及行列式理論密切相關。 大衛·蒙福德在1960年代創建了幾何不變量理論,這是構造模空間的有力工具。此理論探討代數簇在群作用下的商空間,並研究軌道的幾何性質。幾何不變量理論與古典不變量理論的關聯如次:考慮域 k 上的仿射代數簇 X.

新!!: 同調代數和不變量理論 · 查看更多 »

交換代數

在抽象代數中,交換代數旨在探討交換環及其理想,以及交換環上的模。代數數論與代數幾何皆奠基於交換代數。交換環中最突出的例子包括多項式環、代數整數環與p進數環,以及它們的各種商環與局部化。 由於概形無非是交換環譜的黏合,交換代數遂成為研究概形局部性質的主要語言。.

新!!: 同調代數和交換代數 · 查看更多 »

代数几何

代数几何是数学的一个分支。 经典代数几何研究多项式方程的零点,而现代代数几何将抽象代数,尤其是交换代数,同几何学的语言和问题结合起来。 代数几何的基本研究对象为代数簇。代数簇是由空间坐标的若干代数方程的零点集。常见的例子有平面代数曲线,比如直线、圆、椭圆、抛物线、双曲线、三次曲线(非奇异情形称作椭圆曲线)、四次曲线(如双纽线,以及卵形线)、以及一般n次曲线。代数几何的基本问题涉及对代数簇的分类,比如考虑在双有理等价意义下的分类,即双有理几何,以及模空间问题,等等。 代数几何在现代数学占中心地位,与多复变函数论、微分几何、拓扑学和数论等不同领域均有交叉。始于对代数方程组的研究,代数几何延续解方程未竟之事;与其求出方程实在的解,代数几何尝试理解方程组的解的几何性质。代数几何的概念和技巧都催生了某些最深奥的数学的分支。 进入20世纪,代数几何的研究又衍生出几个分支:.

新!!: 同調代數和代数几何 · 查看更多 »

代数拓扑

代数拓扑(Algebraic topology)是使用抽象代数的工具来研究拓扑空间的数学分支。.

新!!: 同調代數和代数拓扑 · 查看更多 »

代數幾何基礎

《代數幾何基礎》(Éléments de géométrie algébrique,簡稱EGA,又譯“代數幾何原理”)是亞歷山大·格羅滕迪克在讓·迪厄多内協助下寫作的一部代數幾何專著。從1960年到1967年分八部分發表在《高等科學研究所數學出版物》(Publications mathématiques de l'I.H.É.S.)上,共1700餘頁。該書把代數幾何的基礎系統地建立在概形的概念之上。這部著作被視爲現代代數幾何的奠基之作和基本參考書。 各章標題如下: 另有第零章 《預備知識》(Chapitre 0.),分散在其他各章之前。 該書原計劃寫十三章,後來未能完成。第四章和未能完成的一些内容出現在《代數幾何討論班》中。 格羅滕迪克後來又寫了一個新版,只完成了第一章,1971年由施普林格出版社出版。新版對術語作了重大的改動:“預概形”改稱“概形”,“概形”改稱“分離概形”。.

新!!: 同調代數和代數幾何基礎 · 查看更多 »

代數幾何討論班

瑪麗樹林代數幾何討論班(Séminaire de géométrie algébrique du Bois Marie,簡稱SGA)是20世紀60年代格羅滕迪克等人在法國高等科學研究所指導的一系列討論班。討論班的報告後來陸續出版,成為現代代數幾何的基本參考文獻。部分内容原計劃以更為詳細完整的形式寫進《代數幾何基礎》,但沒有實現。 討論班的具體情況如下。除SGA 2由北荷蘭出版公司出版以外,其他各卷都屬於施普林格出版社的Lecture Notes in Mathematics系列。 法國數學會正在進行LaTeX排版和再版。 Category:數學書籍 Category:代數幾何.

新!!: 同調代數和代數幾何討論班 · 查看更多 »

代數數論

在數學中,代數數論是數論的一支,其中我們將「數」的概念延伸,以解決具體的數論問題。我們在代數數論中考慮代數數,這類數是有理係數多項式的根。與此相關的概念是數域,這是有理數域的有限擴張。在此框架下能推廣整數為代數整數,並研究一個數域裡的代數整數。 代數整數在加法、減法與乘法下構成一個環,但整數的許多性質並不能推廣到一般數域裡的代數整數上,其中一個例子是素因數分解的唯一性(又稱算術基本定理),這是十九世紀數學家試圖證明費馬大定理時遇到的主要阻礙,然而代數數論的應用不僅止於此。數學中一些較深入的理論有助於讓我們了解代數數與代數整數的性質——包括伽羅瓦理論、伽羅瓦上同調、類域論、表示理論與L-函數的相關理論等等。 數論中的許多問題可藉由「模 p」(其中 p 為素數)來研究。這套技術導向p進數的建構,而p進數是局部域的例子;局部域的研究運用了一些研究數域時的相同方法,但是通常更容易處理。一般數域上的陳述常與各個局部域上的相應陳述有關,例如哈瑟原理:「一個有理係數二次方程在有理數域上有解,若且唯若它在實數上及在每個素數 p 之 p進數域上有解」。這類結果往往被稱作局部-整體原理,其中「局部」意指局部域,而「整體」意指數域。.

新!!: 同調代數和代數數論 · 查看更多 »

微分形式

微分形式是多变量微积分,微分拓扑和张量分析领域的一个数学概念。现代意义上的微分形式,及其以楔积(wedge product)和外微分结构形成外代数的想法,都是由法国数学家埃里·嘉当引入的。.

新!!: 同調代數和微分形式 · 查看更多 »

微分流形

光滑流形(),或称-微分流形()、-可微流形(),是指一个被赋予了光滑结构的拓扑流形。一般的,如果不特指,微分流形或可微流形指的就是类的微分流形。可微流形在物理學中非常重要。特殊種類的可微流形構成了經典力學、廣義相對論和楊-米爾斯理論等物理理論的基礎。可以為可微流形開發微積分。可微流形上的微積分研究被稱為微分幾何。.

新!!: 同調代數和微分流形 · 查看更多 »

儒勒·昂利·庞加莱

儒勒·昂利·庞加莱(Jules Henri Poincaré,法語发音,又译作彭加勒、昂利·彭加勒,),通常称为昂利·庞加莱,法国最伟大的数学家之一,理论科学家和科学哲学家。庞加莱被公认是19世纪后和20世纪初的领袖数学家,是繼高斯之後对于数学及其应用具有全面知识的最后數學家。 他对数学,数学物理,和天体力学做出了很多创造性的基础性的贡献。他提出的庞加莱猜想是数学中最著名的问题之一。在他对三体问题的研究中,庞加莱成了第一个发现混沌确定系统的人並为现代的混沌理论打下了基础。庞加莱比爱因斯坦的工作更早一步,并起草了一个狭义相对论的简略版。庞加莱群以他命名。.

新!!: 同調代數和儒勒·昂利·庞加莱 · 查看更多 »

凝聚層

在數學中,尤其是代數幾何與複流形理論裡,凝聚層是一類特別容易處理的層。凝聚層的定義指涉到一個環層(例如一個概形的結構層、複流形上的全純函數層或 D-模),此環層蘊藏了所論空間的幾何性質。相關的概念還有擬凝聚層與有限展示層。代數幾何與複解析幾何裡的許多性質與定理都以凝聚層及其上同調表述。 凝聚層可被視作向量叢截面層的推廣。它們構成的範疇在取核、上核、有限直和等操作下封閉。此外,若底空間滿足合宜的緊緻條件,則凝聚性在底空間的映射下保持不變,且具有有限維的層上同調群。交換代數裡的一些定理也能應用於凝聚層,如中山正引理。.

新!!: 同調代數和凝聚層 · 查看更多 »

內射對象與投射對象

在同調代數中,內射對象與投射對象是內射模與投射模在阿貝爾範疇中的推廣,二者的定義相對偶。以下固定一個阿貝爾範疇 \mathcal 。.

新!!: 同調代數和內射對象與投射對象 · 查看更多 »

內射分解

在同調代數中,一個阿貝爾範疇 \mathcal 中的對象 A 之內射分解定義為一正合序列 或簡寫成 0 \rightarrow A \rightarrow I^\bullet,使得其中每個 I^n 皆為內射對象。固定對象 A,則任兩個內射分解至多差一個鏈複形的同倫等價。 若 \mathcal 中的每個對象都有內射分解,則稱 \mathcal 有充足的內射元,這類範疇上能以內射分解開展同調代數的研究。典型例子包括:.

新!!: 同調代數和內射分解 · 查看更多 »

內射維度、投射維度與同調維度

投射維度、內射維度與同調維度(又稱整體維度)是交換代數中考慮的重要不變量。.

新!!: 同調代數和內射維度、投射維度與同調維度 · 查看更多 »

內射模

內射模(injective module),在模論中,是具有與有理數 \mathbb(視為 \Z-模)相似性質的模。內射模是投射模的對偶概念,由Reinhold Baer於1940年引進。.

新!!: 同調代數和內射模 · 查看更多 »

环可能指:.

新!!: 同調代數和环 · 查看更多 »

在數學中,群是由一個集合以及一個二元運算所組成的,符合下述四个性质(称为“群公理”)的代數結構。这四个性质是封闭性、結合律、單位元和对于集合中所有元素存在逆元素。 很多熟知的數學結構比如數系統都遵从群公理,例如整數配備上加法運算就形成一個群。如果将群公理的公式從具体的群和其運算中抽象出來,就使得人们可以用靈活的方式来處理起源于抽象代數或其他许多数学分支的實體,而同时保留對象的本質結構性质。 群在數學內外各個領域中是無處不在的,这使得它們成為當代數學的组成的中心原理。 群與對稱概念共有基礎根源。對稱群把幾何物體的如此描述物体的對稱特征:它是保持物體不變的變換的集合。這種對稱群,特別是連續李群,在很多學術學科中扮演重要角色。例如,矩陣群可以用來理解在狹義相對論底層的基本物理定律和在分子化學中的對稱現象。 群的概念引發自多項式方程的研究,由埃瓦里斯特·伽罗瓦在1830年代開創。在得到來自其他領域如數論和幾何学的貢獻之后,群概念在1870年左右形成并牢固建立。現代群論是非常活躍的數學學科,它以自己的方式研究群。為了探索群,數學家發明了各種概念來把群分解成更小的、更好理解的部分,比如子群、商群和單群。除了它們的抽象性質,群理論家還從理論和計算兩種角度來研究具體表示群的各種方式(群的表示)。對有限群已經發展出了特別豐富的理論,這在1983年完成的有限簡單群分類中達到頂峰。从1980年代中叶以来,将有限生成群作为几何对象来研究的几何群论,成为了群论中一个特别活跃的分支。.

新!!: 同調代數和群 · 查看更多 »

群上同調

在同調代數中,群上同調是一套研究群及其表示的代數工具。群上同調源於代數拓撲,在代數數論上也有重要應用;它是現代類域論的基本構件之一。.

新!!: 同調代數和群上同調 · 查看更多 »

群表示論

在群論中,群表示論(group representation theory)是一个非常重要的理論。它包含了(局部)緊緻群、李群、李代數及群概形的表示等種種分支,近來無限維表示理論也漸露頭角。表示理論在量子物理與數學的各領域中均有重要應用。.

新!!: 同調代數和群表示論 · 查看更多 »

環的局部化

在抽象代數中,局部化是一種在環中形式地添加某些元素的倒數,藉以建構分式的技術;由此可透過張量積構造模的局部化。範疇的局部化過程類似,但此時加入的是態射之逆元素,以使得這些態射在局部化以後變為同構。 局部化在環論與代數幾何中佔有根本地位,範疇的局部化則引出導範疇的概念,在高等數學中有眾多應用。.

新!!: 同調代數和環的局部化 · 查看更多 »

牛津大学

牛津大學(University of Oxford;非正式:Oxford University,或:Oxford;勳銜簡稱:Oxon)位於英格蘭牛津市。是一所世界聞名的公立研究型書院聯邦制大學。它是英語世界歷史最悠久的大學,也是世上現存第二古老持續辦學的高等教育機構。雖然大學的實際創立日期難以考證,但授課紀錄最晚可上溯到1096年。 牛津大學的師生人數自1167年亨利二世禁止英國學生前往巴黎大學就學後就開始迅速上升。1209年,牛津師生與鎮民的衝突使一些牛津學者另闢蹊徑,他們遷離至東北方的劍橋鎮並成立後來的劍橋大學。這兩所古老的大學在辦學模式、管理架構等各方面都非常相似,兩校同時展開相當悠久的競爭歲月,故常被合稱為「牛劍」。 牛津大學由38所獨立書院及4所學術學院組成。 各個書院為獨立的行政機構並隸屬於大學。它們有自己的管理架構、收生以及學生活動安排;而學術學院則負責安排教職員講課及指導研究項目,另負責編制課程及給予學術指引。牛津大學並沒有獨立於城鎮的主校區,大樓和設施散見整個牛津鎮。 大學的本科教育包括書院的每週輔導課程,以及由學術學院提供的學科課程。上課地點除了書院外,還包括由校方提供的講堂、課室及實驗室。牛津大學同時為兩個著名獎學金計劃的舉辦地:一為於2001年設立的克拉倫登獎學金;另一為羅德獎學金。牛津同時擁有全球最具規模的大學出版社,及全英最大型的大學圖書館系統。牛津大學培養眾多社會名人,當中包括26位英國首相、29位諾貝爾獎得主(只計算學生;連教職員計算則達69位)、6位图灵奖得主及多國領袖與政治要員。。牛津大学在数学、物理、医学、法学、商学、文學等多个领域拥有崇高的学术地位及广泛的影响力,被公认为是当今世界最顶尖的高等教育机构之一.

新!!: 同調代數和牛津大学 · 查看更多 »

Ext函子

在同調代數中,Ext 函子是 Hom 函子的導函子。此函子首見於代數拓撲,但其應用遍佈許多領域。.

新!!: 同調代數和Ext函子 · 查看更多 »

非交換幾何

非交換幾何(Noncommutative geometry,简称NCG)為數學的分支領域,內容為的幾何方法。「空間」的架構在局域上是由函數的非交換代數所代表。非交換代數是一種結合代數,而乘積不是交換性的,亦即xy不總是等於yx。更廣義地說,這是一種代數結構,其中主要二元運算之一為非交換的。拓樸學或範數等概念可以延伸到非交換幾何中。.

新!!: 同調代數和非交換幾何 · 查看更多 »

諾特環

諾特環是抽象代數中一類滿足升鏈條件的環。希爾伯特首先在研究不變量理論時證明了多項式環的每個理想都是有限生成的,隨後埃米·諾特從中提煉出升鏈條件,諾特環由此命名。.

新!!: 同調代數和諾特環 · 查看更多 »

譜序列

在同調代數中,譜序列是一種藉著逐步逼近以計算同調或上同調群的技術,由讓·勒雷在1946年首創。其應用見諸代數拓撲、群上同調與同倫理論。.

新!!: 同調代數和譜序列 · 查看更多 »

诺曼·斯廷罗德

诺曼·厄尔·斯廷罗德(Norman Earl Steenrod,)是一个著名的拓扑学家,他以在代数拓扑领域的贡献而为人所熟知。.

新!!: 同調代數和诺曼·斯廷罗德 · 查看更多 »

貝蒂數

在代數拓撲學中,拓撲空間之貝蒂數 b_0, b_1, b_2, \ldots 是一族重要的不變量,取值為非負整數或無窮大。直觀地看,b_0 是連通成份之個數,b_1 是沿著閉曲線剪開空間而保持連通的最大剪裁次數。更高次的 b_k 可藉同調群定義。 「貝蒂數」一詞首先由龐加萊使用,以義大利數學家恩里科·貝蒂命名。.

新!!: 同調代數和貝蒂數 · 查看更多 »

黎曼曲面

数学上,特别是在复分析中,一个黎曼曲面是一个一维复流形。黎曼曲面可以被視为是一个复平面的变形版本:在每一点局部看来,他们就像一片复平面,但整体的拓扑可能极为不同。例如,他们可以看起来像球或是环,或者两个页面粘在一起。 黎曼曲面的精髓在于在曲面之间可以定义全纯函数。黎曼曲面现在被认为是研究这些函数的整体行为的自然选择,特别是像平方根和自然对数这样的多值函數。 每个黎曼曲面都是二维实解析流形(也就是曲面),但它有更多的结构(特别是一个複結構),因为全純函数的无歧义的定义需要用到这些结构。一个实二维流形可以变成为一个黎曼曲面(通常有几种不同的方式)当且仅当它是可定向的。所以球和环有複結構,但是莫比乌斯带,克莱因瓶和射影平面没有。 黎曼曲面的几何性质是最妙的,它们也给與其它曲线,流形或簇上的推广提供了直观的理解和动力。黎曼-罗赫定理就是这种影响的最佳例子。.

新!!: 同調代數和黎曼曲面 · 查看更多 »

范畴论

疇論是數學的一門學科,以抽象的方法來處理數學概念,將這些概念形式化成一組組的「物件」及「態射」。數學中許多重要的領域可以形式化成範疇,並且使用範疇論,令在這些領域中許多難理解、難捉摸的數學結論可以比沒有使用範疇還會更容易敘述及證明。 範疇最容易理解的一個例子為集合範疇,其物件為集合,態射為集合間的函數。但需注意,範疇的物件不一定要是集合,態射也不一定要是函數;一個數學概念若可以找到一種方法,以符合物件及態射的定義,則可形成一個有效的範疇,且所有在範疇論中導出的結論都可應用在這個數學概念之上。 範疇最簡單的例子之一為广群,其態射皆為可逆的。群胚的概念在拓撲學中很重要。範疇現在在大部分的數學分支中都有出現,在理論電腦科學的某些領域中用于對應資料型別,而在數學物理中被用來描述向量空間。 範疇論不只是對研究範疇論的人有意義,對其他數學家而言也有著其他的意思。一個可追溯至1940年代的述語「一般化的抽象廢話」,即被用來指範疇論那相對於其他傳統的數學分支更高階的抽象化。.

新!!: 同調代數和范畴论 · 查看更多 »

阿貝爾範疇

在數學中,阿貝爾範疇(或稱交換範疇)是一個能對態射與對象取和,而且核與上核存在且滿足一定性質的範疇;最基本的例子是阿貝爾群構成的範疇Ab。阿貝爾範疇是同調代數的基本框架。.

新!!: 同調代數和阿貝爾範疇 · 查看更多 »

阿贝尔群

阿貝爾群(Abelian group)也稱爲交換群(commutative group)或可交換群,它是滿足其元素的運算不依賴於它們的次序(交換律公理)的群。阿貝爾群推廣了整數集合的加法運算。阿貝爾群以挪威數學家尼尔斯·阿貝爾命名。 阿貝爾群的概念是抽象代數的基本概念之一。其基本研究對象是模和向量空間。阿貝爾群的理論比其他非阿貝爾群簡單。有限阿貝爾群已經被徹底地研究了。無限阿貝爾群理論則是目前正在研究的領域。.

新!!: 同調代數和阿贝尔群 · 查看更多 »

Tor函子

在交換代數中,Tor 函子是張量積的導函子。此函子起初是為了表述代數拓撲中的 Künneth 定理與普遍係數定理而定義。.

新!!: 同調代數和Tor函子 · 查看更多 »

投射分解

在同調代數中,一個阿貝爾範疇 \mathcal 中的對象 A 之投射分解定義為一個正合序列 或簡寫成 P_\bullet \rightarrow A \rightarrow 0,使得其中每個 P_n 皆為投射對象。對任一對象 A,任兩個投射分解至多差一個鏈複形的同倫等價。 若 \mathcal 中的每個對象都有投射分解,則稱 \mathcal 有充足的投射元,這類範疇上能以投射分解開展同調代數的研究。典型例子包括:.

新!!: 同調代數和投射分解 · 查看更多 »

投射模

在交換代數中,一個環 R 上的投射模是自由模的推廣,它有多種等價的定義;就幾何的觀點,投射模之於自由模一如向量叢之於平凡向量叢。在範疇論的語言中,投射模可以推廣為一個阿貝爾範疇中的投射對象。 投射模首見於昂利·嘉當與塞繆爾·艾倫伯格的重要著作 Homological Algebra,由此定義的投射分解是同調代數的基本概念之一。.

新!!: 同調代數和投射模 · 查看更多 »

李代數

数学上,李代数是一个代数结构,主要用于研究象李群和微分流形之类的几何对象。李代数因研究无穷小变换的概念而引入。“李代数”(以索菲斯·李命名)一词是由赫尔曼·外尔在1930年代引入的。在旧文献中,无穷小群指的就是李代数。.

新!!: 同調代數和李代數 · 查看更多 »

李群

數學中,李群(Lie group,)是具有群结构的光滑微分流形,其群作用與微分结构相容。李群的名字源於索菲斯·李的姓氏,以其為連續變換群奠定基礎。1893年,法文名詞groupes de Lie首次出現在李的學生Arthur Tresse的論文第三頁中。.

新!!: 同調代數和李群 · 查看更多 »

在數學的抽象代數中,環上的模 (module over a ring)的概念是對向量空間概念的推廣,這裡不再要求向量空間裡的純量的代數結構是體(field),進而放寬純量可以是環(ring)。 因此,模同向量空間一樣是加法交换群;在環元素和模元素之間定義了乘積運算,并且環元素和模元素的乘積是符合結合律的(在同環中的乘法一起用的時候)和分配律的。 模非常密切的關聯於群的表示理論。它們還是交換代數和同調代數的中心概念,并廣泛的用于代數幾何和代數拓撲中。.

新!!: 同調代數和模 · 查看更多 »

正合函子

在範疇論中,正合函子(或譯作恰當函子)是保存有限極限的函子。在阿貝爾範疇中,這就相當於保存正合序列的函子。.

新!!: 同調代數和正合函子 · 查看更多 »

正則局部環

在交換代數中,正則局部環是使得其極大理想的最小生成元個數等於其Krull維度的局部諾特環。.

新!!: 同調代數和正則局部環 · 查看更多 »

波恩哈德·黎曼

格奥尔格·弗雷德里希·波恩哈德·黎曼《世界人名翻譯大辭典》,2342頁,「Riemann, Berhard」條。 (德語:Georg Friedrich Bernhard Riemann,,)德国数学家,黎曼几何学创始人,复变函数论创始人之一。.

新!!: 同調代數和波恩哈德·黎曼 · 查看更多 »

斯托克斯定理

斯托克斯定理(英文:Stokes' theorem)是微分几何中关于微分形式的积分的定理,因為維數跟空間的不同而有不同的表現形式,它的一般形式包含了向量分析的几个定理,以斯托克斯爵士命名。.

新!!: 同調代數和斯托克斯定理 · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

新!!: 同調代數和数学 · 查看更多 »

拟同构

拟同构是同调代数中的一个概念。链复形间的态射A_\bullet\to B_\bullet被称为拟同构,如果它所诱导的所有同调群间的同态H_n(A_\bullet)\to H_n(B_\bullet)都是同构。上链复形间的态射A^\bullet\to B^\bullet被称为拟同构,如果它所诱导的所有上同调群间的同态H^n(A^\bullet)\to H^n(B^\bullet)都是同构。 拟同构给出导出范畴中的同构。 N Category:代数拓扑 Category:态射.

新!!: 同調代數和拟同构 · 查看更多 »

传出传入
嘿!我们在Facebook上吧! »