我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

別雷定理

指数 別雷定理

數學上,別雷定理(Belyi's theorem)是有關代數曲線的定理,指出任何用代數數係數定義的代數曲線C,都代表這樣的一個,這黎曼曲面能作為黎曼球面的,且只有三個分歧點。 這定理是1979年的結果。這個結果當時令人大感意外,激發格羅滕迪克發展出理論,使用組合數學資料描述代數數上的非奇異代數曲線。 格羅滕迪克曾在《》評價這定理說:「不到一年後,在赫爾斯基的國際數學家大會中,蘇聯數學家別雷宣佈了正正這個結果,證明令人困惑地簡單,德利涅一封信的兩小頁也容得下。毫無疑問,從未有一個深刻且令人迷惑的結果,如此短短數行就證明出來!.

目录

  1. 14 关系: 劍橋大學出版社尖點上半平面代數數代數曲線国际数学家大会皮埃尔·德利涅组合数学莫比乌斯变换菲利克斯·克莱因黎曼球面黎曼曲面格羅滕迪克模曲線

  2. 代数几何定理
  3. 代數曲線

劍橋大學出版社

劍橋大學出版社(Cambridge University Press)隸屬於英國劍橋大學,成立於1534年,是世界上僅次於牛津大學出版社的第二大大學出版社。.

查看 別雷定理和劍橋大學出版社

尖點

尖點(cusp)是曲線中的一種奇點。曲線上的動點在移到尖點時會開始反向移動,右圖是一個典型的例子。 給定一個以解析參數式定義的平面曲線: x&.

查看 別雷定理和尖點

上半平面

上半平面(upper half-plane)H是一数学名詞,是指由虛部為正的复数組成的集合: 此詞語的由來是因為虛數x + iy常視為是在笛卡儿坐标系下,平面中的點(x,y),若垂直方向為Y軸時,其上半平面對應X軸以上的區域,因此也對應y > 0區域的複數。 上半平面是許多複分析中重要函數的定義域,特別是模形式。y n,最大对称,單連通,截面曲率為-1的n維黎曼流形。此表示方式下,上半平面為H2因為其實維度為2。 数论中的希爾伯特模形式和一些函數在許多上半平面組成的空間Hn有關。另一個數論研究者感興趣的空間是Hn,是西格爾模形式的定義域。.

查看 別雷定理和上半平面

代數數

代數數是代数与数论中的重要概念,指任何整係數多项式的复根。 所有代数数的集合构成一个域,称为代数数域(与定义为有理数域的有限扩张的代数数域同名,但不是同一个概念),记作\mathcal或\overline,是复数域\mathbb的子域。 不是代数数的实数称为超越数,例如圆周率。.

查看 別雷定理和代數數

代數曲線

在代數幾何中,一條代數曲線是一維的代數簇。最典型的例子是射影平面\mathbb^2上由一個齊次多項式f(X,Y)定義的零點。.

查看 別雷定理和代數曲線

国际数学家大会

国际数学家大会(International Congress of Mathematicians,简称ICM)是由国际数学联盟(IMU)主办的全球性数学学术会议。会议的主要内容是进行学术交流,并在开幕式上颁发菲尔兹奖(1936年起)、奈望林纳奖(1982年起)、高斯奖(2006年起)和陈省身奖章(2010年起)。 首届国际数学家大会1897年在瑞士蘇黎世举行,1900年巴黎大会之后每四年举行一次。除两次世界大战的影响外,国际数学家大会从未中断。2014年大會於8月13日至21日在韓國首爾舉行,2018年大會將在巴西里約熱內盧舉行。.

查看 別雷定理和国际数学家大会

皮埃尔·德利涅

埃尔·勒内·德利涅子爵(Vicomte Pierre René Deligne,Pierre Deligne,),生于布鲁塞尔,比利时数学家。他最重要的贡献之一是20世纪70年代关于韦伊猜想的工作。.

查看 別雷定理和皮埃尔·德利涅

组合数学

广义的组合数学(Combinatorics)就是离散数学,狭义的组合数学是组合计数、图论、代数结构、数理逻辑等的总称。但这只是不同学者在叫法上的区别。总之,组合数学是一门研究可數或离散对象的科学。随着计算机科学的日益发展,组合数学的重要性也日渐凸显,因为计算机科学的核心内容是使用算法处理离散数据。 狭义的组合数学主要研究满足一定条件的组态(也称组合模型)的存在、计数以及构造等方面的问题。 组合数学的主要内容有组合计数、组合设计、组合矩阵、组合优化(最佳組合)等。.

查看 別雷定理和组合数学

莫比乌斯变换

在几何学--, 莫比乌斯变换是一类从黎曼球面映射到自身的函数。用扩展复平面上的复数表示的话,其形式为: 其中 z, a, b, c, d 为满足 ad − bc ≠ 0的(扩展)复数。 莫比乌斯变换也可以被分解为以下几个变换:把平面射影到球面上,把球体进行旋转、位移等任何变换,然后把它射影回平面上。 莫比乌斯变换是以数学家奥古斯特·费迪南德·莫比乌斯的名字命名的,它也被叫做单应变换(homographic transformation)或分式线性变换(linear fractional transformation)。.

查看 別雷定理和莫比乌斯变换

菲利克斯·克莱因

菲利克斯·克莱因(Felix Klein,),德国数学家。 “克莱因”(Klein)这个姓氏在德文中是“小”的意思。“菲利克斯”(Felix)则源于拉丁文,意为“幸运儿”。.

查看 別雷定理和菲利克斯·克莱因

黎曼球面

数学上,黎曼球面是一种将複數平面加上一个无穷远点的扩张,使得下面这类公式至少在某种意义下有意义 它由19世纪数学家黎曼而得名。也称为.

查看 別雷定理和黎曼球面

黎曼曲面

数学上,特别是在复分析中,一个黎曼曲面是一个一维复流形。黎曼曲面可以被視为是一个复平面的变形版本:在每一点局部看来,他们就像一片复平面,但整体的拓扑可能极为不同。例如,他们可以看起来像球或是环,或者两个页面粘在一起。 黎曼曲面的精髓在于在曲面之间可以定义全纯函数。黎曼曲面现在被认为是研究这些函数的整体行为的自然选择,特别是像平方根和自然对数这样的多值函數。 每个黎曼曲面都是二维实解析流形(也就是曲面),但它有更多的结构(特别是一个複結構),因为全純函数的无歧义的定义需要用到这些结构。一个实二维流形可以变成为一个黎曼曲面(通常有几种不同的方式)当且仅当它是可定向的。所以球和环有複結構,但是莫比乌斯带,克莱因瓶和射影平面没有。 黎曼曲面的几何性质是最妙的,它们也给與其它曲线,流形或簇上的推广提供了直观的理解和动力。黎曼-罗赫定理就是这种影响的最佳例子。.

查看 別雷定理和黎曼曲面

格羅滕迪克

#重定向 亚历山大·格罗滕迪克.

查看 別雷定理和格羅滕迪克

模曲線

在代數幾何及數論領域,模曲線是一類緊黎曼曲面,同時也是定義於某數域上的射影代數曲線。模曲線是當代數論、表示理論及代數幾何中重要的課題。 「模曲線」一詞源於以下事實:模曲線參數化了一族橢圓曲線,因而是一種模空間。志村簇是模曲線在高維度的類比。.

查看 別雷定理和模曲線

另见

代数几何定理

代數曲線