我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

代數曲線和別雷定理

快捷方式: 差异相似杰卡德相似系数参考

代數曲線和別雷定理之间的区别

代數曲線 vs. 別雷定理

在代數幾何中,一條代數曲線是一維的代數簇。最典型的例子是射影平面\mathbb^2上由一個齊次多項式f(X,Y)定義的零點。. 數學上,別雷定理(Belyi's theorem)是有關代數曲線的定理,指出任何用代數數係數定義的代數曲線C,都代表這樣的一個,這黎曼曲面能作為黎曼球面的,且只有三個分歧點。 這定理是1979年的結果。這個結果當時令人大感意外,激發格羅滕迪克發展出理論,使用組合數學資料描述代數數上的非奇異代數曲線。 格羅滕迪克曾在《》評價這定理說:「不到一年後,在赫爾斯基的國際數學家大會中,蘇聯數學家別雷宣佈了正正這個結果,證明令人困惑地簡單,德利涅一封信的兩小頁也容得下。毫無疑問,從未有一個深刻且令人迷惑的結果,如此短短數行就證明出來!.

之间代數曲線和別雷定理相似

代數曲線和別雷定理有(在联盟百科)2共同点: 尖點黎曼曲面

尖點

尖點(cusp)是曲線中的一種奇點。曲線上的動點在移到尖點時會開始反向移動,右圖是一個典型的例子。 給定一個以解析參數式定義的平面曲線: x&.

代數曲線和尖點 · 別雷定理和尖點 · 查看更多 »

黎曼曲面

数学上,特别是在复分析中,一个黎曼曲面是一个一维复流形。黎曼曲面可以被視为是一个复平面的变形版本:在每一点局部看来,他们就像一片复平面,但整体的拓扑可能极为不同。例如,他们可以看起来像球或是环,或者两个页面粘在一起。 黎曼曲面的精髓在于在曲面之间可以定义全纯函数。黎曼曲面现在被认为是研究这些函数的整体行为的自然选择,特别是像平方根和自然对数这样的多值函數。 每个黎曼曲面都是二维实解析流形(也就是曲面),但它有更多的结构(特别是一个複結構),因为全純函数的无歧义的定义需要用到这些结构。一个实二维流形可以变成为一个黎曼曲面(通常有几种不同的方式)当且仅当它是可定向的。所以球和环有複結構,但是莫比乌斯带,克莱因瓶和射影平面没有。 黎曼曲面的几何性质是最妙的,它们也给與其它曲线,流形或簇上的推广提供了直观的理解和动力。黎曼-罗赫定理就是这种影响的最佳例子。.

代數曲線和黎曼曲面 · 別雷定理和黎曼曲面 · 查看更多 »

上面的列表回答下列问题

代數曲線和別雷定理之间的比较

代數曲線有33个关系,而別雷定理有14个。由于它们的共同之处2,杰卡德指数为4.26% = 2 / (33 + 14)。

参考

本文介绍代數曲線和別雷定理之间的关系。要访问该信息提取每篇文章,请访问: