目录
18 关系: 大尼古拉·伯努利,安特卫普,小尼古拉·伯努利,尼古拉一世·伯努利,尼古拉二世·伯努利,巴塞尔,丹尼尔·伯努利,伯努利定律,伯努利微分方程,伯努利分布,伯努利数,約翰·白努利,瑞士,萊昂哈德·歐拉,雅各布·伯努利,概率,比利时,流体力学。
- 巴塞尔历史
- 數學史
- 科学家家族
大尼古拉·伯努利
#重定向 尼古拉一世·伯努利.
安特卫普
安特卫普(Antwerpen;Antorf;Anvers,依法文譯盎凡爾,德语为安托尔夫)是比利时最重要的商业中心、港口城市和法蘭德斯的首府。它有512,000 居民(2013年1月),市區面積204.51平方公里,是比利时第二大城市。都市區面積1449平方公里,人口1,190,769人(2008年1月)。.
查看 伯努利家族和安特卫普
小尼古拉·伯努利
#重定向 尼古拉二世·伯努利.
尼古拉一世·伯努利
尼古拉一世·伯努利(Nikolaus I. Bernoulli,),生於瑞士巴塞尔,瑞士數學家,為伯努利家族的成員。.
尼古拉二世·伯努利
尼古拉二世·伯努利(),瑞士数学家,伯努利家族成员,約翰·伯努利的儿子,13岁入巴塞尔大学,1715年取得法学硕士学位。1725年同其弟弟丹尼尔·伯努利一起应邀到圣彼得堡去,可惜次年就死在那里。.
巴塞尔
巴塞爾(又稱為巴泽爾,Basel,Bâle,Basilea)是瑞士的第三大城市(僅次於蘇黎世和日內瓦),為巴塞爾城市州(Basel-Stadt,Bâle-Ville)的首府,坐落於瑞士西北的三國交角,西北鄰法國阿爾薩斯,東北與德國南北走向的黑森林山脈接壤;而萊茵河在此東注北湧穿城而去,將巴塞爾一分為二,版圖較大者位於西岸稱為大巴塞爾区,小巴塞爾区則位於東岸。 巴塞尔与邻近的自治市里恩(Riehen)和贝廷恩(Bettingen BS)以及与城市附近的古老渔村克莱恩许宁恩(Kleinhüningen)联合形成巴塞尔城市州。 巴塞尔市中心是围绕着市政大厅及14世纪建成的巴塞尔大学附近形成的。狭窄的街道及小路,因为被莱茵河隔断而建立的桥梁都是巴塞尔的特色之处。进入市中心部分则因为保护关系除了搭载游客的电车外,是没有任何机动交通工具的。 巴塞尔是化工和制药工业发达的地区,尤其以知名药业公司诺华(Novartis)和霍夫曼·罗氏集团(Hoffmann - La Roche)为首的瑞士最大的药品公司总部都设在巴塞尔。位于巴塞尔附近的穆滕茨(Muttenz)是全欧洲最大的铁路调路及分路车站。巴塞尔港口是瑞士仅有的由莱茵河畔向北海的出口。巴塞尔-米卢斯-弗赖堡欧洲机场是与邻近的法国一同管理的,它位于法国境内,由一条高速公路通往瑞士境内。边界关税于是成为了机场范围内的收费项目。 巴塞尔有时被冠以Romandie的德語名称,因为巴塞尔的官方语系是德语,其准确的官方称呼是巴塞尔-德语。.
查看 伯努利家族和巴塞尔
丹尼尔·伯努利
丹尼尔·伯努利(Daniel Bernoulli,),生於荷兰格罗宁根,著名數學家,约翰·伯努利之子,為伯努利家族代表人物之一。其伯努利定律适用于沿着一条流线的稳定、非粘滞、不可压缩流,在流体力学和空气动力学中有关键性的作用。.
伯努利定律
伯努利原理(Bernoulli's principle),又稱柏努利定律、白努利定律(Bernoulli's Law),是流體力學中的一個定律,由瑞士流體物理學家丹尼尔·伯努利於1738年出版他的理論《Hydrodynamica》,描述流體沿著一條穩定、非黏性、不可壓縮的流線移動行為。 在流體動力學,伯努利原理指出,無黏性的流體的速度增加時,流體的壓力能或位能(勢能)總和將減少。 伯努利原理可以應用到不同類型的流體流動,從而是可廣泛套用的伯努利方程表示式。事實上,有不同類型的流的伯努利方程的不同形式的。伯努利原理的簡單形式是有效的不可壓縮流動(如最液體流動),也為移動可壓縮流體(如氣體)在低馬赫數(通常小於0.3)。更先進的形式可被應用到在某些情況 下,在更高的馬赫數(見伯努利方程的推導)可壓縮流。 伯努利定律可以從能量守恆定律來推演。說明如下:在一個穩定的水流,沿著直線流向的所有點上,各種形式的流體機械能總和必定相同。也就是說,動能,位能,與內能的總和保持不變。換言之,任何的流體速度增加,即代表動態壓力和單位體積動能的增加,而在同時會導致其靜態壓力,單位體積流體的位能、內能等三者總和的減少。如果液體流出水庫,在各方向的流線上,各種形式的能量的總和是相同的;因為每單位體積能量的總和(即壓力和單位體積流體的重力位能 \rho g h的總和)在水庫內的任何位置都相同。 伯努利原理,也可以直接由牛頓第二定律推演。說明如下:如果從高壓區域往低壓區域,有一小體積流體沿水平方向流動,小體積區域後方的壓力自然比前方區域的壓力更大。所以,此區域的力量總和必然是沿著流線方向向前。在此假設,前後方區域面積相等,如此便提供了一個正方向淨力施於原先設定的流體小體積區域,其加速度與力量同方向。此假想環境中,流體粒子僅受到壓力和自己質量的重力之影響。先假設如果流體沿著流線方向作水平流動,並與流體流線的截面積垂直,因為流體從高壓區域朝低壓區域移動,流體速度因此增加;如果該小體積區域的流速降低,其唯一的可能性必定是因為它從低壓區朝高壓區移動。因此,任一水平流動流體之內,壓力最低處有最高流速,壓力最高處有最低流速。.
查看 伯努利家族和伯努利定律
伯努利微分方程
伯努利微分方程是形式如 y'+ P(x)y.
伯努利分布
伯努利分布(Bernoulli distribution,又名两点分布或者0-1分布,是一個離散型概率分布,為紀念瑞士科學家雅各布·伯努利而命名。)若伯努利試驗成功,則伯努利隨机變-zh-hans:量; zh-hant:數;-取值為1。若伯努利試驗失敗,則伯努利隨机變-zh-hans:量; zh-hant:數;-取值為0。記其成功概率為p (0p1),失敗-zh-hans:概;zh-hk:機;zh-tw:機;-率為q.
查看 伯努利家族和伯努利分布
伯努利数
數學上,白努利數 是一個與數論有密切關聯的有理數序列。前幾項被發現的白努利數分別為: 上標 ± 在本文中用來區別兩種不同的白努利數定義,而這兩種定義只有在 時有所不同:.
查看 伯努利家族和伯努利数
約翰·白努利
約翰·伯努利(Johann Bernoulli,)出生於瑞士巴塞爾,是一位傑出的數學家。他是雅各布·伯努利的弟弟,丹尼爾·伯努利(伯努利定律發明者)與尼古拉二世·伯努利的父親。數學大師萊昂哈德·歐拉是他的學生。.
查看 伯努利家族和約翰·白努利
瑞士
士联邦(Schweizerische Eidgenossenschaft;Confédération suisse;Confederazione Svizzera;Confederaziun svizra;正式称呼采用Confœderatio Helvetica,因此瑞士的ISO 3166双拉丁字母国家代号是“CH”)通稱瑞士(Schweiz;Suisse;Svizzera;Svizra),為中欧或者西歐國家之一,劃分為26個州。瑞士為聯邦制國家,伯爾尼是联邦政府所在地。瑞士北靠德国,西邻法国,南接意大利,东临奥地利和列支敦士登。 瑞士屬内陆山地國家,地理上分為阿爾卑斯山、瑞士高原及侏羅山脈三部分,面积41,285平方公里,阿爾卑斯山佔國土大部分面積,而800萬人口中,大多分布於瑞士高原,瑞士高原也是瑞士主要城市如經濟中心蘇黎世及日內瓦的所在地。瑞士因自然風光及氣候條件而有「世界公園」的美譽。 瑞士一開始有僱傭兵制度,後來才改採武裝中立,自1815年維也納會議後從未捲入过國際战争,瑞士自2002年起才成為聯合國正式會員國,但瑞士實行積極外交政策且頻繁參與世界各地的重建和平活動;瑞士為红十字国际委员会的發源地且為许多国际性组织总部所在地,如联合国日内瓦办事处。在歐洲區域組織方面,瑞士為欧洲自由贸易联盟的創始國及申根区成員國,但並非欧盟及歐洲經濟區成員國。 依照人均国民生产总值,瑞士是世界最富裕的国家之一,同時瑞士人均財富也居(除摩纳哥之外的)世界首位。依國際匯率計算,瑞士為世界第19大經濟體;以购买力平价計算則為世界第39大經濟體;出口額及進口額分別居世界第20位及第18位。瑞士由3個主要語言及文化區所組成,分別為德语區、法语區及意大利语區,而後加入了罗曼什语區。雖然瑞士人中德語人口居多數,但瑞士並未形成單一民族及語言的國家,而且其國民中外國出生的比例相當高。對國家強烈的歸屬感則來自於共同的歷史背景及價值觀,如联邦主义及直接民主制等。傳統上以瑞士永久同盟於1291年8月初締結為建國之初始,而8月1日是瑞士國慶日。.
查看 伯努利家族和瑞士
萊昂哈德·歐拉
莱昂哈德·欧拉(Leonhard Euler,台灣舊譯尤拉,)是一位瑞士数学家和物理学家,近代数学先驱之一,他一生大部分时间在俄国和普鲁士度过。 欧拉在数学的多个领域,包括微积分和图论都做出过重大发现。他引进的许多数学术语和书写格式,例如函数的记法"f(x)",一直沿用至今。此外,他还在力学、光学和天文学等学科有突出的贡献。 欧拉是18世纪杰出的数学家,同时也是有史以来最伟大的数学家之一。他也是一位多产作者,其学术著作約有60-80冊。法国数学家皮埃爾-西蒙·拉普拉斯曾这样评价欧拉对于数学的贡献:“读欧拉的著作吧,在任何意义上,他都是我们的大师”。.
雅各布·伯努利
雅各布·伯努利(Jakob I. Bernoulli,)伯努利家族代表人物之一,数学家。他是最早使用“积分”这个术语的人,也是较早使用极坐标系的数学家之一。他研究了悬链线,还确定了等时曲线的方程。概率论中的伯努利试验与大数定理也是他提出来的。.
概率
--率,舊稱--率,又称或然率、機會率或--、可能性,是数学概率论的基本概念,是一个在0到1之间的实数,是对随机事件发生之可能性的度量。 概率常用來量化對於某些不確定命題的想法"Kendall's Advanced Theory of Statistics, Volume 1: Distribution Theory", Alan Stuart and Keith Ord, 6th Ed, (2009), ISBN 978-0-534-24312-8,命題一般會是以下的形式:「某個特定事件會發生嗎?」,對應的想法則是:「我們可以多確定這個事件會發生?」。確定的程度可以用0到1之間的數值來表示,這個數值就是機率William Feller, "An Introduction to Probability Theory and Its Applications", (Vol 1), 3rd Ed, (1968),Wiley,ISBN 978-0-471-25708-0。因此若事件發生的機率越高,表示我們越認為這個事件可能發生。像丟銅板就是一個簡單的例子,正面朝上及背面朝上的兩種結果看來機率相同,每個的機率都是1/2,也就是正面朝上及背面朝上的機率各有50%。 這些概念可以形成機率論中的數學公理(參考概率公理),在像數學、統計學、金融、博弈論、科學(特別是物理)、人工智慧/機器學習、電腦科學及哲學等學科中都會用到。機率論也可以描述複雜系統中的內在機制及規律性。.
查看 伯努利家族和概率
比利时
比利時王國(Koninkrijk België;法語:Royaume de Belgique;德語:Königreich Belgien),是一個西歐國家。它是歐洲聯盟的創始會員國之一,首都布魯塞爾是歐盟與北大西洋公約組織等大型國際組織的總部所在地。比利時自北起順時針分別與荷蘭、德國、盧森堡和法國接壤,西面則濱臨北海。 比利時的名稱,源自羅馬時代,當時此地稱為比利時高盧(Gallia Belgica),字面意為貝爾蓋人的高盧。「比利時」這個中文譯名,源自1849年徐繼畬所編纂的《瀛寰志略》。.
查看 伯努利家族和比利时
流体力学
流體力學(Fluid mechanics)是力學的一門分支,是研究流體(包含氣體、液體及等離子體)現象以及相關力學行為的科學。流體力學可以按照研究對象的運動方式分為流體靜力學和流體動力學,前者研究處於靜止狀態的流體,後者研究力對於流體運動的影響。流體力學按照應用範圍,分為:空氣力學及水力學等等。 流體力學是連續介質力學的一門分支,是以宏觀的角度來考慮系統特性,而不是微觀的考慮系統中每一個粒子的特性。流体力学(尤甚是流體動力學)是一個活躍的研究領域,其中有許多尚未解決或部分解決的問題。流體動力學所應用的數學系統非常複雜,最佳的處理方式是利用電腦進行數值分析。有一個現代的學科稱為計算流體力學,就是用數值分析的方式求解流體力學問題。是一個將流體流場視覺化並進行分析的實驗方式,也利用了流體高度可見化的特點。 理論流體力學的基本方程是纳维-斯托克斯方程,簡稱N-S方程,纳维-斯托克斯方程由一些微分方程組成,通常只有透過給予特定的邊界條件與使用數值計算的方式才可求解。纳维-斯托克斯方程中包含速度\vec.
查看 伯努利家族和流体力学
另见
巴塞尔历史
數學史
- 代數幾何討論班
- 伯努利家族
- 信息论
- 分析哲學
- 圆周率近似值
- 圓周率計算年表
- 存在图
- 安提基特拉机械
- 密率
- 数学史
- 数学基础
- 数学用表
- 有限單群分類
- 朗蘭茲綱領
- 流数法
- 無窮小量
- 特殊函数
- 穷竭法
- 策梅洛定理 (博弈論)
- 超复数
- 驴桥定理
科学家家族
- 伯努利家族
- 斯特魯維家族
- 達爾文-威治伍德家族
亦称为 Bernoulli家族。