目录
卡爾·龍格
卡爾·龍格(Carl Runge )是一位德國數學家、 物理學家、光譜學家。在數值分析學裏,他是龍格-庫塔法的共同發明者與共同命名者。 幼时,龍格在古巴哈瓦那度過了几年;在那期間,他的父親尤利烏斯·龍格是駐古巴的丹麥外交官。之后全家回到了不來梅。他父亲于1864年早逝。 1880年,他在柏林大學获取數學博士,导师是被譽為「現代分析之父」的著名德國數學家卡爾·魏爾施特拉斯。1886年,他迁至漢諾威,成為漢諾威大學的教授。 他的興趣包括數學,光譜學,大地測量學,與天體物理學。除了純數學以外,他也從事很多涉及實驗的工作。他跟海因里希·凱瑟一同研究各種元素的譜線,又將研究的結果應用在天體光譜學。 1904年,受哥廷根大學教授菲利克斯·克萊因的主動邀請,他同意去那裡教書。1925 年,他在哥廷根大學退休。 月球的龍格隕石坑 (Runge crater) 是因他而命名的。.
查看 龙格现象和卡爾·龍格
吉布斯现象
約西亞·吉布斯 吉布斯现象(Gibbs phenomenon),由于1848年最先提出 Available on-line at: ,并由约西亚·吉布斯于1899年证明。在工程应用时常用有限正弦项正弦波叠加逼近原周期信号。所用的谐波次数N的大小决定逼近原波形的程度,N增加,逼近的精度不断改善。但是由于对于具有不连续点的周期信号会发生一种现象:当选取的傅里叶级数的项数N增加时,合成的波形虽然更逼近原函数,但在不连续点附近会出现一个固定高度的过冲,N越大,过冲的最大值越靠近不连续点,但其峰值并不下降,而是大约等于原函数在不连续点处跳变值的9%,且在不连续点两侧呈现衰减振荡的形式。.
查看 龙格现象和吉布斯现象
函数
函數在數學中為兩集合間的一種對應關係:輸入值集合中的每項元素皆能對應唯一一項輸出值集合中的元素。例如實數x對應到其平方x2的關係就是一個函數,若以3作為此函數的輸入值,所得的輸出值便是9。 為方便起見,一般做法是以符號f,g,h等等來指代一個函數。若函數f以x作為輸入值,則其輸出值一般寫作f(x),讀作f of x。上述的平方函數關係寫成數學式記為f(x).
查看 龙格现象和函数
魏尔斯特拉斯逼近定理
魏尔斯特拉斯逼近定理有两个:.
插值
数学的数值分析领域中,內插或稱插值(interpolation)是一種通过已知的、离散的数据點,在範圍內推求新數據點的过程或方法。求解科学和工程的问题時,通常有許多數據點藉由采样、实验等方法获得,这些数据可能代表了有限個數值函數,其中自變量的值。而根据这些数据,我们往往希望得到一个连续的函数(也就是曲线);或者更密集的离散方程与已知数据互相吻合,这个过程叫做拟合。 與插值密切相關的另一個問題是通過簡單函數逼近複雜函數。假設給定函數的公式是已知的,但是太複雜以至於不能有效地進行評估。來自原始函數的一些已知數據點,或許會使用較簡單的函數來產生插值。當然,若使用一個簡單的函數來估計原始數據點時,通常會出現插值誤差;然而,取決於該問題领域和所使用的插值方法,以簡單函數推得的插值數據,可能會比所導致的精度損失更大。 內插是曲线必须通过已知点的拟合。参见拟合条目。 例如,已知数据:.
查看 龙格现象和插值
样条函数
在数学学科数值分析中,样条是一种特殊的函数,由多项式分段定义。样条的英语单词spline来源于可变形的样条工具,那是一种在造船和工程制图时用来画出光滑形状的工具。在中国大陆,早期曾经被称做“齿函数”。后来因为工程学术语中“放样”一词而得名。 在插值问题中,样条插值通常比多项式插值好用。用低阶的样条插值能产生和高阶的多项式插值类似的效果,并且可以避免被称为龙格现象的数值不稳定的出现。并且低阶的样条插值还具有“保凸”的重要性质。 在计算机科学的计算机辅助设计和计算机图形学中,样条通常是指分段定义的多项式参数曲线。由于样条构造简单,使用方便,拟合准确,并能近似曲线拟合和交互式曲线设计中复杂的形状,样条是这些领域中曲线的常用表示方法。.
查看 龙格现象和样条函数
数值分析
数值分析(numerical analysis),是指在数学分析(区别于离散数学)问题中,对使用数值近似(相对于一般化的符号运算)算法的研究。 巴比伦泥板YBC 7289是关于数值分析的最早数学作品之一,它给出了 \sqrt 在六十进制下的一个数值逼近,\sqrt是一個邊長為1的正方形的對角線,在西元前1800年巴比倫人也已在巴比倫泥板上計算勾股數(畢氏三元數)(3, 4, 5),即直角三角形的三邊長比。 数值分析延續了實務上數學計算的傳統。巴比倫人利用巴比伦泥板計算\sqrt的近似值,而不是精確值。在許多實務的問題中,精確值往往無法求得,或是無法用有理數表示(如\sqrt)。数值分析的目的不在求出正確的答案,而是在其誤差在一合理範圍的條件下找到近似解。 在所有工程及科學的領域中都會用到数值分析。像天體力學研究中會用到常微分方程,最優化會用在资产组合管理中,數值線性代數是資料分析中重要的一部份,而隨機微分方程及馬可夫鏈是在醫藥或生物學中生物細胞模擬的基礎。 在電腦發明之前,数值分析主要是依靠大型的函數表及人工的內插法,但在二十世紀中被電腦的計算所取代。不過電腦的內插演算法仍然是数值分析軟體中重要的一部份。.
查看 龙格现象和数值分析