徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

多项式插值

指数 多项式插值

在数值分析这个数学分支中,多项式插值用多项式对一组给定数据进行插值的过程。换句话说就是,对于一组给定的数据(如来自于采样的数据),其目的就是寻找一个恰好通过这些数据点的多项式。.

32 关系: 埃尔米特插值双射取樣均差多項式大O符号字体排印学三角多项式三角函数切比雪夫多项式周期函数傅里叶级数离散傅里叶变换算子范数绝对连续牛顿多项式行列式魏尔斯特拉斯逼近定理计算机图形学龙格现象范德蒙矩陣自然對數投影查找表插值样条函数样条插值泰勒公式数学数值分析數值積分拉格朗日插值法

埃尔米特插值

不少实际的插值问题不但要求在节点上的函数值相等,而且还要求对应的导数值也相等,甚至要求高阶导数也相等,满足这种要求的插值多项式就是埃尔米特插值多项式。.

新!!: 多项式插值和埃尔米特插值 · 查看更多 »

双射

數學中,一個由集合X映射至集合Y的函數,若對每一在Y內的y,存在唯一一個在X內的x与其对应,則此函數為對射函數。 換句話說,f為雙射的若其為兩集合間的一一對應,亦即同時為單射和滿射。 例如,由整數集合\Z至\Z的函數\operatorname,其將每一個整數x連結至整數\operatorname(x).

新!!: 多项式插值和双射 · 查看更多 »

取樣

在信号处理领域,采样是将信号从连续时间域上的模拟信号转换到离散时间域上的离散信号的过程,以采样器实现。通常采样与量化联合进行,模拟信号先由采样器按照一定时间间隔采样获得时间上离散的信号,再经模数转换器(ADC)在数值上也进行离散化,从而得到数值和时间上都离散的数字信号。很多情况下所说的“采样”就是指这种采样与量化结合的过程。 通过采样得到的信号,是连续信号(例如,现实生活中的表示压力或速度的信号)的离散形式。连续信号通常每隔一定的时间间隔被模数转换器(ADC)采样,当时时间点上的连续信号的值被表现为离散的,或量化的值。 这样得到的信号的离散形式常常给数据带来一些误差。误差主要来自于两个方面,与连续模拟信号频谱有关的采样频率,以及量化时所用的字长。采样频率指的是对连续信号采样的频度。它代表了离散信号在和时域和空间域上的精确度。字长(比特的数量)用来表示离散信号的值,它体现了信号的大小的精确性。 在一个理论采样器中,一个连续信号乘以将产生另外一个连续信号。只有当信号被量化之后它才变成数字信号,所有三个指数都被离散化。 信号处理中的基础定理采样定理指出,被采样信号不能被清晰地表示出频率超过采样频率一半的组成信号。这个频率(采样频率的一半)称为奈奎斯特频率。超过奈奎斯特频率的频率N能够在数字信号中看到,但是它们的频率是不确定的。也就是说,一个频率为f的成份频率不能从其它的成份频率2N-f、2N+f、4N-f等中区分开来。这个不确定性称为混叠。为了更加完美地处理这个问题,许多模拟信号在转换成数字表示之前使用抗混叠滤波器(通常是低通滤波器)滤除高于奈奎斯特频率的频率分量。 采样定理的推广定理指出,最高频率超过奈奎斯特频率的信号同样能够被采样,前提是已知这一信号的频带范围,并且信号带宽与采样频率须满足一定的关系。 在采样定理的约束的范围内,最初的信号能够在来自于理想样品集合的采样值的精度范围内被完全地重建起来。重建的信号是使用每个样品衡量一个Sinc函数并且使用奈奎斯特-香农插值公式累加结果得到的。.

新!!: 多项式插值和取樣 · 查看更多 »

均差

均差(Divided differences)是遞歸除法過程。在数值分析中,也称差商(),可用於計算牛頓多項式形式的多項式插值的係數。.

新!!: 多项式插值和均差 · 查看更多 »

多項式

多项式(Polynomial)是代数学中的基础概念,是由称为未知数的变量和称为系数的常数通过有限次加减法、乘法以及自然数幂次的乘方运算得到的代数表达式。多项式是整式的一种。未知数只有一个的多项式称为一元多项式;例如x^2-3x+4就是一个一元多项式。未知数不止一个的多项式称为多元多项式,例如就是一個三元多项式。 可以写成只由一项构成的多项式也称为单项式。如果一项中不含未知数,则称之为常数项。 多项式在数学的很多分支中乃至许多自然科学以及工程学中都有重要作用。.

新!!: 多项式插值和多項式 · 查看更多 »

大O符号

大O符号(Big O notation),又稱為漸進符號,是用于描述函数渐近行为的数学符号。更确切地说,它是用另一个(通常更简单的)函数来描述一个函数数量级的渐近上界。在数学中,它一般用来刻画被截断的无穷级数尤其是渐近级数的剩余项;在计算机科学中,它在分析算法复杂性的方面非常有用。 大O符号是由德国数论学家在其1892年的著作《解析数论》(Analytische Zahlentheorie)首先引入的。而这个记号则是在另一位德国数论学家的著作中才推广的,因此它有时又称为朗道符号(Landau symbols)。代表“order of...”(……阶)的大O,最初是一个大写希腊字母“Ο”(omicron),现今用的是大写拉丁字母“O”。.

新!!: 多项式插值和大O符号 · 查看更多 »

字体排印学

字体排印学(typography)又称为文字设计,是通过排版使得文字易认、可读和优美的技艺。排版,即安排活字的方式,包括字体与字号的选取、栏宽与行高的设定以及字距的调整等。在西方设计领域,这项技艺常常被喻为“二维的建筑”。字体排印侧重于对不同样式与大小的活字进行安排;与之相近的设计门类字体设计(type design),则是对字体本身形状的描绘。尽管字体设计有时也被视为字体排印的一部分,然而不同分工的设计师对“字体排印师(typographer)”和“字体设计师(type designer)”并没有相互认同。 印刷技术的演进对字体排印的传统与发展有着重要影响。排版的对象是活字。桌面出版技术引入的数字字体,又可以视作是数码活字。在桌面出版时代和计算机普及之前,印刷文字的排版一直由专门人员完成,如排字工人、字体排印师、平面设计师、漫画家等等。现代的文字编码与字体技术使得排版作为一项技艺的门槛降低。正如英国平面设计院院长,David Jury所言:“字体排印现已成为每个人都在做的事情。”.

新!!: 多项式插值和字体排印学 · 查看更多 »

三角多项式

在数学中,三角多项式是一类基于三角函数的函数的总称。三角多项式是可以表示成有限个正弦函数sin(nx) 和余弦函数cos(nx) 的和的函数,其中的x 是变量,而n 是一个自然数。三角多项式中每一项的系数可以是实数或者复数。如果系数是复数的话,那么这个三角多项式是一个傅里叶级数。 三角多项式在许多数学分支,如数学分析和数值分析中都有应用,例如在傅里叶分析中,三角多项式被用于傅里叶级数的表示,在三角插值法中,三角多项式被用于逼近周期性函数。 三角多项式一般可以写成.

新!!: 多项式插值和三角多项式 · 查看更多 »

三角函数

三角函数(Trigonometric functions)是数学中常见的一类关于角度的函数。三角函数将直角三角形的内角和它的两个边的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。 常见的三角函数包括正弦函数(\sin)、余弦函数(\cos)和正切函数(\tan或者\operatorname);在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、半正矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。 三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。.

新!!: 多项式插值和三角函数 · 查看更多 »

切比雪夫多项式

切比雪夫多项式是与棣莫弗定理有关,以递归方式定义的一系列正交多项式序列。 通常,第一类切比雪夫多项式以符号Tn表示, 第二类切比雪夫多项式用Un表示。切比雪夫多项式 Tn 或 Un 代表 n 阶多项式。 切比雪夫多项式在逼近理论中有重要的应用。这是因为第一类切比雪夫多项式的根(被称为切比雪夫节点)可以用于多项式插值。相应的插值多项式能最大限度地降低龙格现象,并且提供多项式在连续函数的最佳一致逼近。 在微分方程的研究中,切比雪夫提出切比雪夫微分方程 和 相应地,第一类和第二类切比雪夫多项式分别为这两个方程的解。 这些方程是斯图姆-刘维尔微分方程的特殊情形。.

新!!: 多项式插值和切比雪夫多项式 · 查看更多 »

周期函数

在数学中,周期函数是無論任何独立变量上經過一个确定的周期之后数值皆能重复的函数。我们日常所见的钟表指针以及月亮的月相都呈现出周期性的特点。周期性运动是系统的运动位置呈现周期性的运动。 对于实数或者整数函数来说,周期性意味着按照一定的间隔重复一个特定部分就可以绘制出完整的函数图。如果在函数f中所有的位置x都满足 那么,f就是周期为T的周期函数。非周期函数就是没有类似周期T的函数。 如果周期函数f的周期为T,那么对于f中的任意x以及任意整数n,有 若T.

新!!: 多项式插值和周期函数 · 查看更多 »

傅里叶级数

在数学中,傅里叶级数(Fourier series, )是把类似波的函数表示成简单正弦波的方式。更正式地说,它能将任何周期函数或周期信号分解成一个(可能由无穷个元素组成的)简单振荡函数的集合,即正弦函数和余弦函数(或者,等价地使用复指数)。离散时间傅里叶变换是一个周期函数,通常用定义傅里叶级数的项进行定义。另一个应用的例子是Z变换,将傅里叶级数简化为特殊情形 |z|.

新!!: 多项式插值和傅里叶级数 · 查看更多 »

离散傅里叶变换

离散傅里叶变换(Discrete Fourier Transform,缩写为DFT),是傅里叶变换在时域和频域上都呈离散的形式,将信号的时域采样变换为其DTFT的频域采样。在形式上,变换两端(时域和频域上)的序列是有限长的,而实际上这两组序列都应当被认为是离散周期信号的主值序列。即使对有限长的离散信号作DFT,也应当将其看作其周期延拓的变换。在实际应用中通常采用快速傅里叶变换计算DFT。.

新!!: 多项式插值和离散傅里叶变换 · 查看更多 »

算子范数

算子范数是数学中泛函分析里的概念。算子范数衡量的是线性映射或线性算子的“大小”,通常指的是两个赋范向量空间之间的有界线性映射所构成的空间的范数。.

新!!: 多项式插值和算子范数 · 查看更多 »

绝对连续

在数学中,绝对连续是一个光滑性质,比连续和一致连续都要严格。函数的绝对连续和测度的绝对连续都有定义。.

新!!: 多项式插值和绝对连续 · 查看更多 »

牛顿多项式

牛頓多項式(Newton Polynomial)是數值分析中一種用於插值的多項式,它以英國數學家和物理學家牛頓命名。.

新!!: 多项式插值和牛顿多项式 · 查看更多 »

行列式

行列式(Determinant)是数学中的一個函數,将一个n \times n的矩陣A映射到一個純量,记作\det(A)或|A|。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现线性自同态和向量组的行列式的定义。 行列式的特性可以被概括为一个交替多线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。.

新!!: 多项式插值和行列式 · 查看更多 »

魏尔斯特拉斯逼近定理

魏尔斯特拉斯逼近定理有两个:.

新!!: 多项式插值和魏尔斯特拉斯逼近定理 · 查看更多 »

计算机图形学

计算机图形学(computer graphics,縮寫为CG)是研究计算机在硬件和软件的帮助下创建计算机图形的科学学科,是计算机科学的一個分支領域,主要關注數位合成與操作視覺的圖形內容。雖然這個詞通常被認為是指三維圖形,事實上同時包括了二維圖形以及影像處理。.

新!!: 多项式插值和计算机图形学 · 查看更多 »

龙格现象

在数值分析领域中,龙格现象是在一组等间插值点上使用具有高次多项式的多项式插值时出现的区间边缘处的振荡问题。 它是由卡尔·龙格(Runge)在探索使用多项式插值逼近某些函数时的错误行为时发现的。这一发现非常重要,因为它表明使用高次多项式插值并不总能提高准确性。 该现象与傅里叶级数近似中的吉布斯现象相似。.

新!!: 多项式插值和龙格现象 · 查看更多 »

范德蒙矩陣

在線性代數中,范德蒙矩陣的命名來自Alexandre-Théophile Vandermonde的名字,范德蒙矩陣是一個各列呈現出幾何級數關係的矩陣,例如: 1 & \alpha_1 & \alpha_1^2 & \dots & \alpha_1^\\ 1 & \alpha_2 & \alpha_2^2 & \dots & \alpha_2^\\ 1 & \alpha_3 & \alpha_3^2 & \dots & \alpha_3^\\ \vdots & \vdots & \vdots & \ddots &\vdots \\ 1 & \alpha_m & \alpha_m^2 & \dots & \alpha_m^\\ \end 或以第 i 行第 j 列的關係寫作: (部分作者將上述矩陣寫成轉置後的形式,也就是一整排的 1 不列在左邊,而是列在上面。) n階范德蒙矩陣的行列式可以表示為: 當\alpha_i各不相同时,\det(V)不为零。 上述的行列式又稱作判別式。 給行列式使用萊布尼玆公式 可以把公式改寫為 Sn 指的是 的排列集,sgn(σ) 指的是排列 σ 的奇偶性。 若 m≤n,則矩陣 V 有最大的秩 rank (m)。.

新!!: 多项式插值和范德蒙矩陣 · 查看更多 »

自然對數

自然对数(Natural logarithm)是以e為底數的对数函数,標記作ln(x)或loge(x),其反函数是指數函數ex。.

新!!: 多项式插值和自然對數 · 查看更多 »

投影

在线性代数和泛函分析中,投影是从向量空间映射到自身的一种线性变换,是日常生活中“平行投影”概念的形式化和一般化。同现实中阳光将事物投影到地面上一样,投影变换将整个向量空间映射到它的其中一个子空间,并且在这个子空间中是恒等变换。.

新!!: 多项式插值和投影 · 查看更多 »

查找表

在计算机科学中,查找表(Lookup Table)是用简单的查询操作替换运行时计算的数组或者关联数组这样的数据结构。由于从内存中提取数值经常要比复杂的计算速度快很多,所以这样得到的速度提升是很显著的。 一个经典的例子就是三角函數表。每次计算所需的正弦值在一些应用中可能会慢得无法忍受,为了避免这种情况,应用程序可以在刚开始的一段时间计算一定数量的角度的正弦值,譬如计算每个整数角度的正弦值,在后面的程序需要正弦值的时候,使用查找表从内存中提取临近角度的正弦值而不是使用数学公式进行计算。 在计算机出现之前,人们使用类似的表格来加快手工计算的速度。非常流行的表格有三角、对数、统计density函数。另外一种用来加快手工计算的工具是计算尺。 一些折衷的方法是同时使用查找表和插值这样需要少许计算量的方法,这种方法对于两个预计算的值之间的部分能够提供更高的精度,这样稍微地增加了计算量但是大幅度地提高了应用程序所需的精度。根据预先计算的数值,这种方法在保持同样精度的前提下也减小了查找表的尺寸。 在图像处理中,查找表将索引号与输出值建立联系。'''颜色表'''作为一种普通的 LUT 是用来确定特定图像中每一像素所要显示的颜色和强度。 另外需要注意的一个问题是,尽管查找表经常效率很高,但是如果所替换的计算相当简单的话就会得不偿失,这不仅仅因为从内存中提取结果需要更多的时间,而且因为它增大了所需的内存并且破坏了高速缓存。如果查找表太大,那么几乎每次访问查找表都会导致高速缓存缺失,这在处理器速度超过内存速度的时候愈发成为一个问题。在编译器优化的(rematerialization)过程中也会出现类似的问题。在一些环境如Java编程语言中,由于强制性的边界检查带来的每次查找的附加比较和分支过程,所以查找表可能开销更大。 如何构建查找表有两个基本的约束条件,一个是可用内存的数量;不能构建一个超过能用内存空间的表格,尽管可以构建一个以查找速度为代价的基于磁盘的查找表。另外一个约束条件是初始计算查找表的时间——尽管这项工作不需要经常做,但是如果耗费的时间不可接受,那么也不适合使用查找表。.

新!!: 多项式插值和查找表 · 查看更多 »

插值

数学的数值分析领域中,內插或稱插值(interpolation)是一種通过已知的、离散的数据點,在範圍內推求新數據點的过程或方法。求解科学和工程的问题時,通常有許多數據點藉由采样、实验等方法获得,这些数据可能代表了有限個數值函數,其中自變量的值。而根据这些数据,我们往往希望得到一个连续的函数(也就是曲线);或者更密集的离散方程与已知数据互相吻合,这个过程叫做拟合。 與插值密切相關的另一個問題是通過簡單函數逼近複雜函數。假設給定函數的公式是已知的,但是太複雜以至於不能有效地進行評估。來自原始函數的一些已知數據點,或許會使用較簡單的函數來產生插值。當然,若使用一個簡單的函數來估計原始數據點時,通常會出現插值誤差;然而,取決於該問題领域和所使用的插值方法,以簡單函數推得的插值數據,可能會比所導致的精度損失更大。 內插是曲线必须通过已知点的拟合。参见拟合条目。 例如,已知数据:.

新!!: 多项式插值和插值 · 查看更多 »

样条函数

在数学学科数值分析中,样条是一种特殊的函数,由多项式分段定义。样条的英语单词spline来源于可变形的样条工具,那是一种在造船和工程制图时用来画出光滑形状的工具。在中国大陆,早期曾经被称做“齿函数”。后来因为工程学术语中“放样”一词而得名。 在插值问题中,样条插值通常比多项式插值好用。用低阶的样条插值能产生和高阶的多项式插值类似的效果,并且可以避免被称为龙格现象的数值不稳定的出现。并且低阶的样条插值还具有“保凸”的重要性质。 在计算机科学的计算机辅助设计和计算机图形学中,样条通常是指分段定义的多项式参数曲线。由于样条构造简单,使用方便,拟合准确,并能近似曲线拟合和交互式曲线设计中复杂的形状,样条是这些领域中曲线的常用表示方法。.

新!!: 多项式插值和样条函数 · 查看更多 »

样条插值

在数值分析这个数学分支中,样条插值是使用一种名為样条的特殊分段多项式进行插值的形式。由于样条插值可以使用低阶多项式样条实现较小的插值误差,这样就避免了使用高阶多项式所出现的龙格现象,所以样条插值得到了流行。.

新!!: 多项式插值和样条插值 · 查看更多 »

泰勒公式

在数学中,泰勒公式(Taylor's Formula)是一个用函数在某点的信息描述其附近取值的公式。這個公式來自於微積分的泰勒定理(Taylor's theorem),泰勒定理描述了一個可微函數,如果函数足够光滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值,這個多項式稱為泰勒多項式(Taylor polynomial)。泰勒公式还给出了餘項即这个多项式和实际的函数值之间的偏差。泰勒公式得名于英国数学家布鲁克·泰勒。他在1712年的一封信里首次叙述了这个公式,尽管1671年詹姆斯·格雷高里已经发现了它的特例。拉格朗日在1797年之前,最先提出了帶有餘項的現在形式的泰勒定理。.

新!!: 多项式插值和泰勒公式 · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

新!!: 多项式插值和数学 · 查看更多 »

数值分析

数值分析(numerical analysis),是指在数学分析(区别于离散数学)问题中,对使用数值近似(相对于一般化的符号运算)算法的研究。 巴比伦泥板YBC 7289是关于数值分析的最早数学作品之一,它给出了 \sqrt 在六十进制下的一个数值逼近,\sqrt是一個邊長為1的正方形的對角線,在西元前1800年巴比倫人也已在巴比倫泥板上計算勾股數(畢氏三元數)(3, 4, 5),即直角三角形的三邊長比。 数值分析延續了實務上數學計算的傳統。巴比倫人利用巴比伦泥板計算\sqrt的近似值,而不是精確值。在許多實務的問題中,精確值往往無法求得,或是無法用有理數表示(如\sqrt)。数值分析的目的不在求出正確的答案,而是在其誤差在一合理範圍的條件下找到近似解。 在所有工程及科學的領域中都會用到数值分析。像天體力學研究中會用到常微分方程,最優化會用在资产组合管理中,數值線性代數是資料分析中重要的一部份,而隨機微分方程及馬可夫鏈是在醫藥或生物學中生物細胞模擬的基礎。 在電腦發明之前,数值分析主要是依靠大型的函數表及人工的內插法,但在二十世紀中被電腦的計算所取代。不過電腦的內插演算法仍然是数值分析軟體中重要的一部份。.

新!!: 多项式插值和数值分析 · 查看更多 »

數值積分

在数值分析中,數值積分是计算定積分数值的方法和理论。在数学分析中,给定函数的定積分的计算不总是可行的。许多定积分不能用已知的積分公式得到精确值。数值积分是利用黎曼积分等数学定义,用数值逼近的方法近似计算给定的定积分值。借助于电子计算设备,数值积分可以快速而有效地计算复杂的积分。.

新!!: 多项式插值和數值積分 · 查看更多 »

拉格朗日插值法

在数值分析中,拉格朗日插值法是以法国18世纪数学家约瑟夫·拉格朗日命名的一种多项式插值方法。许多实际问题中都用函数来表示各結果之間某种内在联系或规律,而不少函数都只能通过繁複实验和多次观测来了解。而,如果对实践中的某个物理量进行观测,在若干个不同的地方得到相应的观测值,拉格朗日插值法可以找到一个多项式,其恰好在各个观测的点取到观测到的值。上面这样的多项式就称为拉格朗日(插值)多项式。数学上来说,拉格朗日插值法可以给出一个恰好穿过二维平面上若干个已知点的多项式函数。拉格朗日插值法最早被英国数学家爱德华·华林于1779年发现,不久后(1783年)由莱昂哈德·欧拉再次发现。1795年,拉格朗日在其著作《师范学校数学基础教程》中发表这个插值方法,从此他的名字就和这个方法联系在一起。 对于给定的若n+1个点(x_0, y_0),(x_1, y_1),\ldots,(x_n, y_n),对应于它们的次数不超过n的拉格朗日多项式\scriptstyle L只有一个。如果计入次数更高的多项式,则有无穷个,因为所有与\scriptstyle L相差\lambda (x-x_0)(x-x_1)\ldots(x-x_n)的多项式都满足条件。.

新!!: 多项式插值和拉格朗日插值法 · 查看更多 »

传出传入
嘿!我们在Facebook上吧! »