目录
42 关系: 奔腾4,中央处理器,希伯来语,前端总线,Core 2,缓存,热设计功耗,DDR2 SDRAM,麥金塔,迅馳,蘋果電腦,赛扬,英特尔,電壓,雙通道,Gibibyte,Intel 80486,Intel Core 2,Intel Core 2處理器列表,Intel Core微处理器架构,Intel Core微處理器架構,Intel P6,Mac mini,MB,MMX,NX位元,Opteron,Pentium Dual-Core,Pentium E,Pentium M,Socket 479,SpeedStep,SSE,SSE2,SSE3,X86,X86-64,X86虚拟化,Xeon,时钟频率,32位元,64位元。
- 64位元微處理器
- Intel x86處理器
奔腾4
奔騰4(Pentium 4,或簡称奔4或P4),Intel生產的第七代x86微處理器,是繼1995年出品的第六代P6架构Pentium Pro之後第一款重新設計過的處理器,這一新的架構稱做NetBurst,(此前的Pentium II、Pentium III及相应各版本的Celeron仍旧属于P6架构)。Pentium 4首款產品工程代号為:Willamette,拥有1.4GHz左右的核心時脈,并使用Socket 423腳位架構,于2000年11月发布。值得注意的是,Pentium 4有著非常快速到400MHz的前端匯流排,之後更有提升到533MHz、800MHz,它其實是一個100MHz时钟频率的四倍数据速率(QDR)前端匯流排,因此数据传输速率为4×100MHz。相应的,Pentium 4前期的竞争对手AMD Athlon处理器采用双倍数据输率(DDR)前端匯流排,拥有266MHz或333MHz的数据传输速率(2×133MHz、2×166MHz)。 令业界观察人士感到意外的是,NetBurst架构的Pentium 4在“每周期整数处理能力”和“每周期浮点处理能力”这两个重要性能上比前一代的P6架构不升反降。它通过牺牲每个周期的性能以实现非常高的--和SSE性能。与英特尔的传统保持一致的是,Pentium 4也有低端Celeron〔通常称为Celeron 4〕及Celeron D版本和用于SMP配置的高端Xeon〔至強〕版本。 Pentium 4的设计目标是适应更快的时钟速度,因为消费者开始依据更高的時脈购买電腦。在这方面Pentium 4是一个经典的市场驱动技术的范例。这很快就推动超微半導體(AMD)的“时钟频率神话运动”。英特尔使用一个特别长的指令流水线来实现这个目标,同Pentium III和Athlon那样的传统x86 CPU相比,Pentium 4降低了每个时钟周期的处理能力,但是它能够以更高的时钟速度工作。AMD則採用所謂的PR值來標示與Pentium 4相對應的Athlon XP處理器。 英特尔在發表Pentium 4時向大眾宣布说,NetBurst架構能夠運行在10GHz。然而,NetBurst架构在3.8GHz便遇到提升制程也无法解决的高功耗问题。这迫使英特尔在2005年年中放弃NetBurst,并转向升温更少的Pentium M,祭出“MoDT ('''M'''obile '''o'''n '''D'''esk'''T'''op)”的旗帜;并由此发展处Intel Core微架构取代NetBurst。.
查看 酷睿和奔腾4
中央处理器
中央处理器 (Central Processing Unit,缩写:CPU),是计算机的主要设备之一,功能主要是解释计算机指令以及处理计算机软件中的数据。计算机的可编程性主要是指对中央处理器的编程。中央处理器、内部存储器和输入/输出设备是现代电脑的三大核心部件。1970年代以前,中央处理器由多个独立单元构成,后来发展出由集成电路制造的中央处理器,這些高度收縮的元件就是所謂的微处理器,其中分出的中央处理器最為复杂的电路可以做成单一微小功能强大的单元。 中央处理器廣義上指一系列可以执行复杂的计算机程序的逻辑机器。这个空泛的定义很容易地将在“CPU”这个名称被普遍使用之前的早期计算机也包括在内。无论如何,至少从1960年代早期开始,这个名称及其缩写已开始在电子计算机产业中得到广泛应用。尽管与早期相比,“中央处理器”在物理形态、设计制造和具体任务的执行上有了极大的发展,但是其基本的操作原理一直没有改变。 早期的中央处理器通常是为大型及特定应用的计算机而定制。但是,这种昂贵的为特定应用定制CPU的方法很大程度上已经让位于开发便宜、标准化、适用于一个或多个目的的处理器类。这个标准化趋势始于由单个晶体管组成的大型机和微机年代,随着集成电路的出现而加速。IC使得更为复杂的中央处理器可以在很小的空间中设计和制造(在微米的數量级)。中央处理器的标准化和小型化都使得这一类数字设备和電子零件在现代生活中的出现频率远远超过有限应用专用的计算机。现代微处理器出现在包括从汽车到手机到儿童玩具在内的各种物品中。.
查看 酷睿和中央处理器
希伯来语
希伯来语( -,读音:)属于亚非语系闪米特语族,為具有古代猶太民族(以色列民族或希伯來民族)意識之現代人民的民族語言、也是犹太教的宗教语言。过去2500年,希伯来语主要用于《圣经》与相关宗教方面的研究,自从20世纪特别是以色列复国以来,“希伯来语”作为口语在犹太人中复活,渐渐取代阿拉伯语、拉迪諾語和意第绪语,以色列復国后将“希伯来语”定为官方语言之一,採用希伯来语字母書寫;另一种官方语言是阿拉伯语。希伯来語亦如同其它大部分的閃語族语言般,其拼寫法為橫寫由右到左。.
查看 酷睿和希伯来语
前端总线
前端总线(FSB,Front Side Bus)是指中央处理器数据总线的专门术语,此总线負責中央处理器和北橋晶片间的数据传递。 某些带有L2和L3缓存(Cache)的计算机,通过后端总线(Back Side Bus)实现这些缓存和中央处理器的连接,而此总线的数据传输速率總是高于前端总线。.
查看 酷睿和前端总线
Core 2
#重定向 酷睿2.
查看 酷睿和Core 2
缓存
速缓存(cache, )--原始意义是指存取速度比一般隨機存取記憶體(RAM)快的一种RAM,通常它不像系统主記憶體那样使用DRAM技术,而使用昂贵但較快速的SRAM技术。.
查看 酷睿和缓存
热设计功耗
熱設計功耗(英語:Thermal Design Power,縮寫 TDP,又譯散熱設計功率)的含義是當晶片达到最大負荷的时候〔單位為瓦(W)〕熱量釋放的指標,是電腦的冷卻系统必須有能力驅散熱量的最大限度,但不是晶片釋放熱量的功率。.
查看 酷睿和热设计功耗
DDR2 SDRAM
二代双倍数据率同步動態隨機存取記憶體(Double-Data-Rate Two Synchronous Dynamic Random Access Memory,一般稱為DDR2 SDRAM),是一種電腦記憶體規格。它屬於SDRAM家族的記憶體產品,提供了相較於DDR SDRAM更高的運行效能與更低的電壓,是DDR SDRAM(双倍数据率同步動態隨機存取記憶體)的後繼者。 JEDEC为DDR存储器设立了速度规,并分为了以下两个部分:按内存芯片分类和按内存模块分类。.
麥金塔
--(Macintosh,,或稱為Mac),是個人電腦系列產品,由苹果公司设计、开发和销售,最初目标定位于家庭、教育和创意专业市场。随着Macintosh的出现,该电脑已经发生了巨大的改變。 首款的Mac於1984年1月24日發表。是蘋果公司繼Apple Lisa後第二款具備圖形使用者介面的個人電腦產品,故常被認為是首款將GUI成功商品化的個人電腦。 由於蘋果公司在之後的十多年間(68k Mac系列產品銷售時間1984~1996)將其發展成為一個龐大複雜的產品系列,並且在其後的商品系列名稱中也加入Mac,故Mac Computers也可以泛指所有由蘋果公司設計生產並且運行Mac OS作業系統的個人電腦產品。.
查看 酷睿和麥金塔
迅馳
迅馳(Centrino)是英特爾公司旗下的结合Pentium M,Pentium或酷睿處理器、Intel的芯片组和Intel无线网卡的移动计算解決方案的品牌。每當開發新一代技術都會再使用新的英文開發代號區別,因此迅馳泛指英特爾Pentium M,Pentium或酷睿笔记本电脑主板及无线网络組合的總稱。 从2008年发布的Montevina平台开始,英特尔开始使用“迅驰2”的品牌。 从2009年发布的Calpella平台开始,英特尔開始使用“ix(i3、i5、i7)”(智能处理器)的品牌,「迅馳」品牌已經較少使用,僅使用「Intel Core」、「Intel Pentium」、「Intel Core vPro」等。.
查看 酷睿和迅馳
蘋果電腦
#重定向 蘋果公司.
查看 酷睿和蘋果電腦
赛扬
赛扬(Celeron)是英特尔公司中央处理器的一个注册商标。 赛扬处理器是Intel旗下的「经济型」产品。赛扬与奔腾或酷睿处理器使用的核心相同,但不同的是,赛扬处理器往往要比高端处理器处理能力低。 AMD公司在2000年至2003年使用Duron,中文译名钻龙的处理器来与赛扬抢占低端市场份额;钻龙停产后,于2004年7月推出Sempron,中文译名为闪龙的低价处理器继续与赛扬竞争。.
查看 酷睿和赛扬
英特尔
英特爾公司(Intel Corporation,、)是世界上最大的半導體公司,也是第一家推出x86架構處理器的公司,總部位於美國加利福尼亞州聖克拉拉。由羅伯特·諾伊斯、高登·摩爾、安迪·葛洛夫,以“集成電子”(Integrated Electronics)之名在1968年7月18日共同創辦公司,將高階晶片設計能力與領導業界的製造能力結合在一起。英特爾也有開發主機板晶片組、網路卡、快閃記憶體、繪圖晶片、嵌入式處理器,與對通訊與運算相關的產品等。“Intel Inside”的廣告標語與Pentium系列處理器在1990年代間非常成功的打響英特爾的品牌名號。 英特爾早期在開發SRAM與DRAM的記憶體晶片,在1990年代之前這些記憶體晶片是英特爾的主要業務。在1990年代時,英特爾做了相當大的投資在新的微處理器設計上與培養快速崛起的PC工業。在這段期間英特爾成為PC微處理器的供應領導者,而且市場定位具有相當大的攻勢與有時令人爭議的行銷策略,就像是微軟公司一樣支配著PC工業的發展方向。而Millward Brown Optimor發表的2007年在世界上最強大的品牌排名顯示出英特爾的品牌價值由第15名掉落了10個名次到第25名。 而主要競爭對手有AMD、NVIDIA及Samsung。.
查看 酷睿和英特尔
電壓
電壓(Voltage,electric tension或 electric pressure),也稱作電位差(electrical potential difference),是衡量单位电荷在静电场中由于電勢不同所產生的能量差的物理量。此概念與水位高低所造成的「水壓」相似。需要指出的是,“电压”一词一般只用于电路当中,“電動勢”和“电位差”则普遍应用于一切电现象当中。 電壓的國際單位是伏特(V)。1伏特等於對每1庫侖的電荷做了1焦耳的功,即U(V).
查看 酷睿和電壓
雙通道
#重定向 雙通道記憶體技術.
查看 酷睿和雙通道
Gibibyte
Gibibyte(giga binary byte的缩写)是資訊計量的一个单位,简称GiB。 Gibibyte與Gigabyte常常被混淆,前者的計算方式是二進制,後者的計算方式是十進制。現今的計算上,常把Gigabyte以二進制的方式計算,即230。(因為Windows對GB這個資訊計量單位的誤用,因此在Windows中顯示的"1GB",其實應是指"1GiB",但Windows卻顯示為"1GB",而常造成誤解。誤用會普遍化的一大因素,是因為Windows的作業系統佔有率高),由於两种换算方法的不同,使容量在計算上相差了7.3%,所以常有Windows系统报告的容量比硬盘标示的容量還要小的情况发生。但在苹果公司的OS X作業系統中,对于儲存裝置的容量计算方式与硬盘厂商一致,均为1GB.
查看 酷睿和Gibibyte
Intel 80486
Intel i486(又稱486, 80486)是Intel公司的一款CISC架構的x86 CPU。 i486的前身是 Intel 80386 處理器。.
Intel Core 2
#重定向 酷睿2.
Intel Core 2處理器列表
本列表為Intel Core 2系列各處理器的技術資料,有關Intel Core系列各處理器的技術資料,請參閱Intel Core 處理器列表。.
Intel Core微处理器架构
#重定向 Core微架構.
Intel Core微處理器架構
#重定向 Core微架構.
Intel P6
#重定向 P6微架構.
查看 酷睿和Intel P6
Mac mini
Mac mini 是由蘋果公司所推出的Mac電腦,於2005年1月11日的Macworld中公佈。它的低價加上小巧和容易使用的設計,主要吸引使用Windows的電腦、iPod、和舊型麥金塔電腦的使用者。Mac mini最初有兩款不同的型號,於2005年1月22日在美國推出(1月29日全球發售)。最新版的Mac mini於2014年10月16日推出,採用Intel Core i5或Intel Core i7處理器。.
查看 酷睿和Mac mini
MB
MB可指:.
查看 酷睿和MB
MMX
MMX是由英特尔开发的一种SIMD多媒体指令集,共有57条指令。它于1996年集成在英特尔奔腾(Pentium)MMX处理器上,以提高其多媒体数据的处理能力。 其优点是增加了處理器關於多媒体方面的处理能力,缺点是占用浮点数寄存器进行运算(64位MMX寄存器实际上就是浮点数寄存器的别名)以至于MMX指令和浮点数操作不能同时工作。为了减少在MMX和浮点数模式切换之间所消耗的时间,程序员们尽可能减少模式切换的次数,也就是说,这两种操作在应用上是互斥的。AMD在此基础上发展出3D Now!指令集。 3D Now!發佈一年後,Intel在MMX基础上发展出SSE(Streaming SIMD Extensions)指令集,用來取代MMX。現在,新開發的程式不再僅使用MMX來最佳化軟體執行效能,而是改使用如SSE、3DNOW!等更容易最佳化效能的新一代多媒體指令集,不過目前的處理器大多仍可以執行針對MMX最佳化的較早期軟體。.
查看 酷睿和MMX
NX位元
NX位(全名“No eXecute bit”,即「禁止執行位」,或“執行禁用位元”),是應用在CPU中的一種安全技術。.
查看 酷睿和NX位元
Opteron
Opteron是美國AMD公司一系列的64位元微處理器,中文名为皓龙。於2003年4月22日正式推出。Opteron處理器主要用於多路伺服器的領域上。最早的Opteron處理器採用了K8微處理器架構,及至2007年後期逐步過渡至K10微處理器架構。目前最新的Opteron採用的是2011年發表的Bulldozer微架構及其改版。除了x86及x86-64以外,還發售過使用ARM架構(AArch64、ARMv8)的機種。 其主要競爭對手為英特爾的Xeon處理器系列。原定Opteron將會採用Zen微架構打造,取代Bulldozer/Piledriver微架構的產品,不過最終AMD決定將推出十四年之久的本系列終止,以採用Zen微架構打造的EPYC系列取代之。.
查看 酷睿和Opteron
Pentium Dual-Core
#重定向 奔騰雙核.
Pentium E
#重定向 奔騰雙核.
查看 酷睿和Pentium E
Pentium M
#重定向 奔腾M.
查看 酷睿和Pentium M
Socket 479
Socket 479為一英特爾Pentium M處理器使用的插座,主要在移動平台上出現。相比Socket 478,它使用另一種插腳的配置方法,所以一般情形下Pentium M都不可以使用正常的Socket 478主機板。但由於Socket 479的主機板量少價昂,因此華碩等電腦廠商曾開發轉接板,使Socket 478主機板也能使用Socket 479的CPU。只有855GME、915GM、945GT等的流動處理器晶片組才支援。 另外,英特爾推出另一全新的Socket 479 mPGA,又稱「Socket M」,以供Intel Core、Core 2 Duo使用,這個插座有一支插腳與本來的Socket 479插座不同,故新舊兩者互不支援。新的Socket 479支援667MHz的前端匯流排。.
SpeedStep
SpeedStep技术,最早用於Pentium III Mobile处理器——一种笔记本所用的移动版CPU中,使CPU能在高、低两个确定的频率间切换,而且这种切换不是即时调整的,通常设置为当用电池时降为低频,而在用交流电源时恢复到高频(全速)。由于降为低频的同时也会降低电压和功耗,一方面CPU本身耗电量减少,另一方面发热量也会减少,这样还能缩减甚至完全避免使用风扇散热,进一步的节约了用电,因此能延长电池的使用时间;另一方面在用交流电的时候又能恢复为全速工作以获得最高性能。 SpeedStep 技术的升级版本 EIST 全名為Enhanced Intel SpeedStep Technology(增强型Intel SpeedStep技术),是Intel全新的節約能源技術,最早用于Pentium M处理器,同样也是一款笔记本所用的移动版CPU。出于和AMD台式机处理器中的Cool'n'Quiet技术竞争的目的,EIST 技术现在也推广到Intel较新的台式机处理器中,目前使用这一技术的Intel台式机和移动版CPU包括Core系列、Pentium D系統(不包括805、820、915)、Pentium M系列和超线程的Pentium 4系列(不包括5XX)。 与早期的 SpeedStep 技术不同的是,增强型 SpeedStep 技术可以动态调整CPU频率,當CPU使用率低下或接近零的時候动态降低CPU的倍率,令其工作頻率下降,從而降低电压、功耗以及发热;而一旦监测到CPU使用率很高的时候,立即恢复到原始的速率工作。当然,对于移动版处理器,仍然可以设置在使用电池的时候永远不要调整到最高频率,而始终维持在次高或者最低频率工作。 AMD的CPU有类似效果的技术,称作PowerNow!(移动平台)或者Cool'n'Quiet(桌面平台)。 P.
查看 酷睿和SpeedStep
SSE
SSE(Streaming SIMD Extensions)是英特尔在AMD的3D Now!发布一年之后,在其计算机芯片Pentium III中引入的指令集,是繼MMX的擴充指令集。SSE指令集提供了70條新指令。AMD后来在Athlon XP中加入了对这个新指令集的支持。.
查看 酷睿和SSE
SSE2
SSE2,全名為Streaming SIMD Extensions 2,是一種IA-32架構的SIMD(單一指令多重資料)指令集。SSE2是在 2001年隨著Intel發表第一代Pentium 4處理器也一併推出的指令集。它延伸較早的SSE指令集,而且可以完全取代MMX指令集。在2004年,Intel 再度擴展了SSE2指令為 SSE3 指令集。與 70 條指令的 SSE 相比,SSE2新增了144條指令。在2003年,AMD也在發布AMD64的64位元處理器時跟進SSE2指令集。.
查看 酷睿和SSE2
SSE3
SSE3(Streaming SIMD Extensions 3),又稱PNI(Prescott New Instructions),它指的是:在原有架構的處理器中,所第三次額外新增、添加的多媒體指令集,之前的兩次分別是SSE、SSE2。 SSE3是Intel公司所其原有IA-32架構的處理器所研創,並在2004年初的新款Pentium 4(P4E,Prescott核心)處理器中使用,之後2005年4月AMD公司也發表具備部分SSE3功效的處理器:Athlon 64(E3步進核心),此後的x86處理器也幾乎都具備SSE3的新指令集功能。 此外,在SSE3提出之前,x86架構的處理器先後已有多種多媒體指令集被提創與使用,先後順序大致是Intel MMX、AMD 3DNow!、Intel SSE、Intel SSE2等。 附帶一提的是,SSE3比在它之前的SSE2增加13條新指令。.
查看 酷睿和SSE3
X86
x86泛指一系列由英特爾公司開發處理器的架構,這類處理器最早為1978年面市的「Intel 8086」CPU。 該系列較早期的處理器名稱是以數字來表示80x86。由於以“86”作為結尾,包括Intel 8086、80186、80286、80386以及80486,因此其架構被稱為“x86”。由於數字並不能作為註冊商標,因此Intel及其競爭者均在新一代處理器使用可註冊的名稱,如Pentium。現時英特爾將其稱為IA-32,全名為“Intel Architecture, 32-bit”,一般情形下指代32位元的架構。.
查看 酷睿和X86
X86-64
x86-64( 又稱x64,即英文詞64-bit extended,64位元拓展 的簡寫)是x86架構的64位拓展,向后相容於16位及32位的x86架構。x64於1999年由AMD設計,AMD首次公開64位元集以擴充給x86,稱為「AMD64」。其後也為英特爾所採用,現時英特爾稱之為「Intel 64」,在之前曾使用過「Clackamas Technology」 (CT)、「IA-32e」及「EM64T」。 蘋果公司和RPM套件管理員以「x86-64」或「x86_64」稱呼此64位架構。甲骨文公司及Microsoft稱之為「x64」。BSD家族及其他Linux發行版則使用「x64-64」,32位元版本則稱為「i386」(或 i486/586/686),Arch Linux用x86_64稱呼此64位元架構。.
查看 酷睿和X86-64
X86虚拟化
虚拟化技术是指在x86的系统中,一个或以上的客操作系统(Guest Operating System,簡稱:Guest OS)在一个主操作系统(Host Operating System,簡稱:Host OS)下运行的一种技术。这种技术只要求对客操作系统有很少的修改或甚至根本没有修改。x86处理器架构起先并不满足波佩克与戈德堡虚拟化需求(Popek and Goldberg virtualization requirements),这使得在x86处理器下对普通虚拟机的操作变得十分复杂。在2005年与2006年,英特尔与AMD分别在它们的x86架构上解决了这个问题以及其他的虚拟化困难。.
查看 酷睿和X86虚拟化
Xeon
#重定向 至强.
查看 酷睿和Xeon
时钟频率
时钟频率(又譯:時脈速度,clock rate)是指同步电路中时钟的基础频率,它以“每秒时钟周期”(clock cycles per second)来度量,量度单位採用SI單位赫兹(Hz)。例如,来自晶振的基准频率通常等于一个固定的正弦波形,则时钟频率就是这个基准频率,电子电路会为数字电子设备将它转化成对应的脉冲方波。需要补充一点的是,“速度”作为矢量不应与标量“频率”相混淆,所以使用“时钟速度”来描述这个概念是用词不当的。 在单个时钟--内(现代非嵌入式微处理器的这个时间一般都短于一纳秒)逻辑零状态与逻辑一状态来回切换。 由于发热和电气规格的限制,--里逻辑零状态的持续时间历来要长于逻辑一状态。 中央處理器(CPU)制造商常为时钟频率较高的CPU定额外的高价。就某个CPU来说,时钟频率是在生产环节的最后通过实测测定的。通过了特定测试标准的CPU会被标上这个标准相应的时钟频率,如1.5GHz。而当一个CPU没有通过较高时钟频率一级的测试但通过了较低一级的测试时,它会被标上一个较低的时钟频率。例如某个CPU未通过1.5GHz时钟频率的测试却通过了1.33GHz那一级的,它就会被标为1.33GHz,并且相对于时钟频率为1.5GHz的CPU,它的卖价要低。.
查看 酷睿和时钟频率
32位元
32位元也是一種稱呼電腦世代的名詞,在於以32位元處理器為準則的時間點。 32位元可以儲存的整數範圍是0到4294967295,或使用二的補數是-2147483648到2147483647。因此,32位元記憶體位址可以直接存取4GiB以位元組定址的記憶體。 外部的記憶體和資料匯流排通常都比32位元還寬,但是兩者在處理器內部儲存或是操作時都當作32位元的數量。舉例來說,Pentium Pro處理器是32位元機器,但是外部的位址匯流排是36位元寬,外部的資料匯流排是64位元寬。32位元應用程式是指那些在 32位元平面位址空間(平面記憶體模式)的軟體。.
查看 酷睿和32位元
64位元
64位元CPU是指CPU内部的通用寄存器的宽度为64位元,支持整数的64--宽度的算术与逻辑运算。早在1960年代,64位架构便已存在於当时的超級電腦,且早在1990年代,就有以RISC為基礎的工作站和伺服器。2003年才以x86-64和64位元PowerPC處理器架構的形式引入到(在此之前是32位元)個人電腦領域的主流。 一個CPU,联系外部的資料匯流排与位址匯流排,可能有不同的宽度;術語「64位元」也常用於描述這些匯流排的大小。例如,目前有許多機器有着使用64位元匯流排的32位元處理器(如最初的Pentium和之後的CPU,但Intel的32位CPU的地址总线宽度最大为36位),因此有時會被稱作「64位元」。同樣的,某些16位元處理器(如MC68000)指的是16/32位元處理器具有16位元的匯流排,不過內部也有一些32位元的性能。這一術語也可能指電腦指令集的指令長度,或其它的資料項(如常見的64位元雙精度浮點數)。去掉進一步的條件,「64位元」電腦架構一般具有64位元寬的整數型暫存器,它可支援(內部和外部兩者)64位元「區塊」(chunk)的整數型資料。.
查看 酷睿和64位元
另见
64位元微處理器
Intel x86處理器
- Broadwell微架構
- CULV
- Core微架構
- Haswell微架構
- Intel 80186
- Intel 80286
- Intel 80386
- Intel 80486
- Intel 8086
- Intel 8087
- Intel 8088
- Intel Celeron處理器列表
- Intel Core處理器列表
- Intel Larrabee
- Intel Pentium 4處理器列表
- Intel Pentium D處理器列表
- Intel Tick-Tock
- Intel Xeon處理器列表
- Ivy Bridge微架構
- Kaby Lake
- Nehalem微架構
- NetBurst微架構
- P6微架構
- Sandy Bridge微架構
- Skylake微架構
- 凌動
- 多通道記憶體技術
- 奔腾4
- 奔腾D
- 奔腾II
- 奔腾M
- 奔腾Pro
- 奔騰
- 奔騰III
- 奔騰OverDrive
- 奔騰雙核
- 熔毁 (安全漏洞)
- 第二層位址轉譯
- 至强
- 至强融核
- 赛扬
- 酷睿
- 酷睿2
亦称为 Intel Core處理器列表。