我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

解离常数

指数 解离常数

在化学、生物化学及药理学中,解离常数(dissociation constant,K_)是一种特定类型的平衡常数,用于衡量一较大物体与另一较小组分分开(解离)的倾向,也可以描述配合物解体成组分分子或盐分裂为其组分离子。解离常数是缔合常数的倒数。对于一些特定的盐,解离常数亦可被称为电离常数。 对于一般的反应: \mathrm_\mathrm_ \rightleftharpoons x\mathrm + y\mathrm 其中复合物\mathrm_\mathrm_分解为x份A亚单位及y份B亚单位,则解离常数被定义为: K_.

目录

  1. 13 关系: 平衡常数化學分子凯文·杜兰特倒数离子生物化学电离常数药理学配合物PH值

  2. 平衡化学
  3. 酶动力学

平衡常数

可逆化学反应达到平衡时,每个产物浓度系数次幂的连乘积与每个反应物浓度系数次幂的连乘积成正比,这个比值叫做平衡常数。反应进行得越完全,平衡常数就越大。.

查看 解离常数和平衡常数

化學

化學是一門研究物質的性質、組成、結構、以及变化规律的基礎自然科學。化學研究的對象涉及物質之間的相互關係,或物質和能量之間的關聯。傳統的化學常常都是關於兩種物質接觸、變化,即化學反應,又或者是一種物質變成另一種物質的過程。這些變化有時會需要使用電磁波,當中電磁波負責激發化學作用。不過有時化學都不一定要關於物質之間的反應。光譜學研究物質與光之間的關係,而這些關係並不涉及化學反應。准确的说,化学的研究范围是包括分子、离子、原子、原子团在内的核-电子体系。 「化學」一詞,若單從字面解釋就是「變化的學問」之意。化学主要研究的是化学物质互相作用的科学。化學如同物理皆為自然科學之基礎科學。很多人稱化學為「中心科學」,因為化學為部分科學學門的核心,連接物理概念及其他科學,如材料科學、纳米技术、生物化學等。 研究化學的學者稱為化學家。在化學家的概念中一切物質都是由原子或比原子更細小的物質組成,如電子、中子和質子。但化学反应都是以原子或原子团为最小结构进行的。若干原子通过某种方式结合起来可构成更复杂的结构,例如分子、離子或者晶體。 當代的化學已發展出許多不同的學門,通常每一位化學家只專精於其中一、兩門。在中學課程中的化學,化學家稱為普通化學(Allgemeine Chemie,General Chemistry,Chimie Générale)。普通化學是化學的導論。普通化學課程提供初學者入門簡單的概念,相較於專業學門領域而言,並不甚深入和精確,但普通化學提供化學家直觀、圖像化的思維方式。即使是專業化學家,仍用這些簡單概念來解釋和思考一些複雜的知識。.

查看 解离常数和化學

分子

分子(molecule)是一种构成物质的粒子,呈电中性、由两個或多個原子組成,原子之間因共價鍵而鍵結。能够單獨存在、保持物质的化學性質;由分子組成的物質叫分子化合物。 一個分子是由多個原子在共價鍵中通过共用電子連接一起而形成。它可以由相同的化學元素构成,如氧氣分子 O2;也可以由不同的元素构成,如水分子 H2O。若原子之間由非共價鍵的化學鍵(如離子鍵)所結合,一般不會視為是單一分子。 在不同的領域中,分子的定義也會有一點差異:在热力学中,构成物质的分子(如水分子)、原子(如碳原子)、离子(如氯离子)等在热力学上的表现性质都是一样的,因此,都统称为分子;在氣體動力論中,分子是指任何构成气体的粒子,此定義下,單原子的惰性氣體也可視為是分子。而在量子物理、有機化學及生物化學中,多原子的離子(如硫酸根)也可以視為是一個分子。 分子可根据其构成原子的数量(原子數)分为单原子分子,双原子分子等。 在氣体中,氫分子(H2)、氮分子(N2)、氧分子(O2)、氟分子(F2)和氯分子(Cl2)的原子數是2;固体元素中,黃磷(P4)原子數是4,硫(S8)的是8。所以,氬(Ar)是單原子的分子,氧氣(O2)是雙原子的,臭氧(O3)則是三原子的。 許多常見的有機物質都是由分子所組成的,海洋和大氣中大部份也是分子。但地球上主要的固體物質,包括地函、地殼及地核中雖也是由化學鍵鍵結,但不是由分子所構成。在離子晶體(像鹽)及共價晶體有反覆出現的晶体结构,但也無法找到分子。固態金屬是用金屬鍵鍵結,也有其晶体结构,但也不是由分子組成。玻璃中的原子之間依化學鍵鍵結,但是既沒有分子的存在,其中也沒有類似晶體反覆出現的晶体结構。.

查看 解离常数和分子

凯文·杜兰特

凯文·韦恩·杜蘭特(Kevin Wayne Durant,),美国职业篮球运动员,出身于美國华盛顿特区,現效力金州勇士。杜蘭特參與2007年的選秀獲西雅圖超音速選中成為榜眼,效力9年後於2016年以自由球员身份加盟金州勇士。 杜兰特在2007年NBA选秀首轮以第二顺位加入了西雅图超音速(2008年更名为俄克拉何马城雷霆),榮薦年度最佳新秀。2009-10年赛季,21岁的杜兰特成为NBA史上最年轻的得分王。2013-14年赛季成為NBA MVP。2016-17年赛季,杜兰特加盟金州勇士,获得当季NBA总冠军,并当选NBA总决赛最有价值球员。2017-18年赛季,勇士連霸NBA总冠军,連莊NBA总决赛最有价值球员。 他代表美国国家队出戰2010年世錦賽和2012年奥运会,成功两夺金牌,並成为2010年世錦賽的最有价值球员。.

查看 解离常数和凯文·杜兰特

倒数

數學上,一个数\displaystyle x的倒数(reciprocal),或稱乘法逆元(multiplicative inverse),是指一個与\displaystyle x相乘的积为1的数,记为\displaystyle \tfrac或\displaystyle x^。在抽象代数中,倒数所对应的抽象化概念是乘法群的某个元素的“乘法逆”,也就是相对于群中“乘法”运算的逆元素。注意这个名词只当相应的群中的运算被称为“乘法”后才使用。如果群中的运算被称为“加法”,那么同样的概念称为“加法逆”。乘法逆的具体定义可以参见群的逆元素概念。 汉语中,名词倒数一般用来表示数字的乘法逆,一般在各种数域如:有理数、实数、复数,以及模n的同余类所构成的乘法群中使用。在复数域(实数域)中,每个除了0以外的复数(实数)都存在倒数:只要用某个数自身除1(也就是说用1除以某个数),即可得到它的倒数。用数学记号表示的话: 每个复数(实数)只有一个倒数。一般来说,并不是对所有的代数结构中的乘法运算,每个元素都存在其乘法逆,如对矩阵乘法来说,秩小于阶数的矩阵就没有乘法逆。一个环中的一个元素有乘法逆当且仅当它是可逆元,而它的乘法逆是唯一的当且仅当它不是一个零因子,或者说当它是一个正则元。每个非零元素都有乘法逆的环称为除环。每个非零元素都至多有一个乘法逆的环称为无零因子环。.

查看 解离常数和倒数

离子

離子是指原子或原子基团失去或得到一个或几个电子而形成的带电荷的粒子。得失电子的过程称为电离,电离过程的能量变化可以用电离能来衡量。 在化学反应中,通常是金属元素原子失去最外层电子,非金属原子得到电子,从而使参加反应的原子或原子团带上电荷。带正电荷的原子叫做阳离子,带负电荷的原子叫做阴离子。通过阴、阳离子由于静电作用结合而形成不带电性的化合物,叫做离子化合物。 与分子、原子一样,离子也是构成物质的基本粒子。如氯化钠就是由氯离子和钠离子构成的。.

查看 解离常数和离子

生物化学

生物化学(biochemistry,也作 biological chemistry),顾名思义是研究生物体中的化学进程的一门学科,常常被简称为生化。它主要用于研究细胞内各组分,如蛋白质、糖类、脂类、核酸等生物大分子的结构和功能。而对于化学生物学来说,则着重于利用化学合成中的方法来解答生物化学所发现的相关问题。 虽然存在着大量不同的生物分子,但实际上有很多大的复合物分子(称为“聚合物”)是由相似的亚基(称为“单体”)结合在一起形成的。每一类生物聚合物分子都有自己的一套亚基类型。例如,蛋白质是由20种氨基酸所组成,而脱氧核糖核酸(DNA)由4种核苷酸构成。生物化学研究集中于重要生物分子的化学性质,特别着重于酶促反应的化学机理。 在生物化学研究中,对细胞代谢和内分泌系统的研究进行得相当深入。生物化学的其他研究领域包括遗传密码(DNA和RNA)、 蛋白质生物合成、跨膜运输(membrane transport)以及细胞信号转导。.

查看 解离常数和生物化学

电离常数

#重定向 酸度系数.

查看 解离常数和电离常数

可以指:.

查看 解离常数和盐

药理学

药理学(Pharmacology),是研究药品与有機體(含病原体)相互作用及作用规律的学科。它既研究药品对生物的作用及作用机制,即药品效应动力学(Pharmacodynamics,简称药效学);也研究药品在人体的影响下所发生的变化及其规律,即药品代谢动力学(Pharmacokinetics,简称药代动力学或者药动学)。药理学是以基础医学中的生理学、生物化学、病理学、病理生理学、微生物学、免疫学、分子生物学等为基础,为防治疾病、合理用药提供基本理论、基础知识和科学思维方法,是基础医学、临床医学以及医学与药学的桥梁。.

查看 解离常数和药理学

配合物

配位化合物(coordination complex),--,包含由中心原子或离子与几个配体分子或离子以配位键相结合而形成的复杂分子或离子,通常称为「配位单元」。凡是含有配位单元的化合物都称做配位化合物。研究配合物的化学分支称为配位化学。 配合物是化合物中较大的一个子类别,广泛应用于日常生活、工业生产及生命科学中,近些年来的发展尤其迅速。它不仅与无机化合物、有机金属化合物相關聯,并且与现今化学前沿的原子簇化学、配位催化及分子生物学都有很大的重叠。.

查看 解离常数和配合物

酸(有时用“HA”表示)的传统定义是当溶解在水中时,溶液中氢离子的浓度大于纯水中氢离子浓度的化合物。换句话说,酸性溶液的pH值小于水的pH值(25℃时为水的pH值是7)。酸一般呈酸味,但是品尝酸(尤其是高浓度的酸)是非常危险的。酸可以和碱发生中和作用,生成水和盐。酸可分为无机酸和有机酸两种。.

查看 解离常数和酸

PH值

pH,亦称pH值、氢离子浓度指数、酸鹼值,是溶液中氢离子活度的一种标度,也就是通常意义上溶液酸碱程度的衡量标准。这个概念是1909年由丹麦生物化学家瑟倫·索倫森(Søren Peder Lauritz Sørensen)提出的。「pH」中的「H」代表氫離子(H+),而「p」的來源則有幾種說法。第一種稱p代表德语「Potenz」,意思是力度、強度;第二種稱pH代表拉丁文「pondus hydrogenii」,即「氫的量」;第三種認為p只是索倫森随意选定的符号,因为他也用了q。现今的化学界把p加在无量纲量前面表示该量的负对数。 通常情况下(25℃、298K左右),当pH小于7的时候,溶液呈酸性,当pH大于7的时候,溶液呈碱性,当pH等于7的时候,溶液为中性。 pH允许小于0,如鹽酸(10 mol/L)的pH为−1。同样,pH也允许大于14,如氫氧化鈉(10 mol/L)的pH为15。.

查看 解离常数和PH值

另见

平衡化学

酶动力学