目录
27 关系: 动量,可觀察量,密度矩陣,對易算符,位置,位置算符,初值問題,哈密頓算符,哈密顿力学,動量算符,矩陣力學,算符,经典力学,维尔纳·海森堡,狄拉克符号,相互作用繪景,諧振子,薛丁格繪景,量子力学,量子场论,自由粒子,酉矩阵,泊松括號,波動力學,期望值,指数函数,態向量。
动量
在古典力学裏,动量(momentum)是物体的质量和速度的乘積。例如,一輛快速移動的重型卡車擁有很大的動量。若要使這重型卡車從零速度加速到移動速度,需要使到很大的作用力;若要使重型卡車從移動速度減速到零速度也需要使到很大的作用力。假若卡車能夠輕一點或移動速度能夠慢一點,則它的動量也會小一點。 动量在国际单位制中的单位为kg m s^。有關动量的更精确的量度的内容,请参见本页的动量的现代定义部分。 一般而言,一个物体的动量指的是这个物体在它运动方向上保持运动的趋势。动量实际上是牛顿第一定律的一个推论。 动量是个矢量。 动量是一个守恒量,这表示为在一个封闭系统内动量的总和不可改变。在经典力学中,动量守恒暗含在牛顿定律中,但在狭义相对论中依然成立,(广义)动量在电动力学、量子力学、量子场论、广义相对论中也成立。 勒内·笛卡儿认为宇宙中总的“运动的量”是保持守恒的,这里所说的“运动的量”被理解为“物体大小和速度的乘积”——但这不宜被解读为现代动量定律的表达方式,因为笛卡尔并没有把“质量”这个概念与物体“重量”和“大小”之间的关系区分开来,更重要的是他认为速率(标量)而不是速度(向量)是守恒的。因此对于笛卡尔来说:一个移动的物体从另一个表面弹回来的时候,该物体的方向发生了改变但速率没有发生改变,运动的量应该没有发生改变。.
查看 海森堡繪景和动量
可觀察量
在物理學裏,特別是在量子力學裏,處於某種狀態的物理系統,它所具有的一些性質,可以經過一序列的物理運作過程而得知。這些可以得知的性質,稱為可觀察量(observable)。例如,物理運作可能涉及到施加電磁場於物理系統,然後使用實驗儀器測量某物理量的數值。在經典力學的系統裏,任何可以用實驗測量獲得的可觀察量,都可以用定義於物理系統狀態的實函數來表示。在量子力學裏,物理系統的狀態稱為量子態,其與可觀察量的關係更加微妙,必須使用線性代數來解釋。根據量子力學的數學表述,量子態可以用存在於希爾伯特空間的態向量來代表,量子態的可觀察量可以用厄米算符來代表。.
查看 海森堡繪景和可觀察量
密度矩陣
垂直平面偏振器(3)之後,光子處於垂直偏振純態(4),密度矩陣為\beginbmatrix 1 & 0 \\ 0 & 0 \\ \endbmatrix 。 在量子力學裏,密度算符(density operator)與其對應的密度矩陣(density matrix)專門描述混合態量子系統的物理性質。純態是一種可以直接用態向量 | \psi\rangle 來描述的量子態,混合態則是由幾種純態依照統計機率組成的量子態。假設一個量子系統處於純態 | \psi_1 \rangle 、| \psi_2 \rangle 、| \psi_3 \rangle 、……的機率分別為 w_1 、w_2 、w_3 、……,則這混合態量子系統的密度算符 \rho 為 注意到所有機率的總和為1: 假設 \ 是一組規範正交基,則對應於密度算符的密度矩陣 \varrho ,其每一個元素 \varrho_ 為 對於這量子系統,可觀察量 A 的期望值為 是可觀察量 A 對於每一個純態的期望值 \langle \psi_i | | \psi_i \rangle 乘以其權值 w_i 後的總和。 混合態量子系統出現的案例包括,處於熱力學平衡或化學平衡的系統、製備歷史不確定或隨機變化的系統(因此不知道到底系統處於哪個純態)。假設量子系統處於由幾個糾纏在一起的子系統所組成的純態,則雖然整個系統處於純態,每一個子系統仍舊可能處於混合態。在量子退相干理論裏,密度算符是重要理論工具。 密度算符是一種線性算符,是自伴算符、非負算符(nonnegative operator)、跡數為1的算符。關於密度算符的數學形式論是由約翰·馮·諾伊曼與列夫·郎道各自獨立於1927年給出。.
查看 海森堡繪景和密度矩陣
對易算符
#重定向 交換子.
查看 海森堡繪景和對易算符
位置
位置可以指:.
查看 海森堡繪景和位置
位置算符
在量子力學裏,位置算符(position operator)是一種量子算符。對應於位置算符的可觀察量是粒子的位置。位置算符的本徵值是位置向量。採用狄拉克標記,位置算符 \hat 的本徵態 |x\rang 滿足方程式 其中,x 是本徵值,是量子態為 |x\rang 的粒子所處的位置,x 只是一個數值。.
查看 海森堡繪景和位置算符
初值問題
在數學裏,初值問題是一個涉及微分方程式與一些初始條件的問題;這初始條件是微分方程式的未知函數在某些點的設定值。 以下是一些初值問題的例子:.
查看 海森堡繪景和初值問題
哈密頓算符
#重定向 哈密顿算符.
查看 海森堡繪景和哈密頓算符
哈密顿力学
哈密顿力学是哈密顿于1833年建立的经典力学的重新表述,它由拉格朗日力学演变而来。拉格朗日力学是经典力学的另一表述,由拉格朗日于1788年建立。哈密顿力学与拉格朗日力学不同的是前者可以使用辛空间而不依赖于拉格朗日力学表述。关于这点请参看其数学表述。 适合用哈密顿力学表述的动力系统称为哈密顿系统。.
查看 海森堡繪景和哈密顿力学
動量算符
在量子力學裏,動量算符(momentum operator)是一種算符,可以用來計算一個或多個粒子的動量。對於一個不帶電荷、沒有自旋的粒子,作用於波函數 \psi(x)\,\! 的動量算符可以寫為 其中,\hat\,\! 是動量算符,\hbar\,\! 是約化普朗克常數,i\,\! 是虛數單位,x\,\! 是位置。 給予一個粒子的波函數 \psi(x)\,\! ,這粒子的動量期望值為 其中,p\,\! 是動量。.
查看 海森堡繪景和動量算符
矩陣力學
矩陣力學是量子力學其中一種的表述形式,它是由海森堡、玻恩和约尔当(P.
查看 海森堡繪景和矩陣力學
算符
在物理學裏,算符(operator),又稱算子,作用於物理系統的狀態空間,使得物理系統從某種狀態變換為另外一種狀態。這變換可能相當複雜,需要用很多方程式來表明,假若能夠使用算符來代表,可以更為簡單扼要地表達論述。 對於很多案例,假若作用的對象有所迥異,算符的物理行為也會不同;但是,對於有些案例,算符的物理行為具有一般性,這時,就可以將論題抽象化,專注於研究算符的物理行為,不必顧慮到狀態的獨特性。這方法比較適用於一些像對稱性或守恆定律的論題。因此,在經典力學裏,算符是很有用的工具。在量子力學裏,算符為理論表述不可或缺的要素。 對於更深奧的理論研究,可能會遇到很艱難的數學問題,算符理論(operator theory)能夠提供高功能的架構,使得數學推導更為簡潔精緻、易讀易懂,更能展現出內中物理涵意。 一般而言,在經典力學裏的算符大多作用於函數,這些函數的參數為各種各樣的物理量,算符將某函數映射為另一種函數。這種算符稱為「函數算符」。在量子力學裏的算符稱為「量子算符」,作用的對象是量子態。量子算符將某量子態映射為另一種量子態。.
查看 海森堡繪景和算符
经典力学
经典力学是力学的一个分支。经典力学是以牛顿运动定律为基础,在宏观世界和低速状态下,研究物体运动的基本学科。在物理學裏,经典力学是最早被接受为力學的一个基本綱領。经典力学又分为静力学(描述静止物体)、运动学(描述物体运动)和动力学(描述物体受力作用下的运动)。16世纪,伽利略·伽利莱就已采用科学实验和数学分析的方法研究力学。他为后来的科学家提供了许多豁然开朗的启示。艾萨克·牛顿则是最早使用数学语言描述力学定律的科学家。.
查看 海森堡繪景和经典力学
维尔纳·海森堡
维尔纳·海森堡(Werner Heisenberg,),德国物理学家,量子力学创始人之一,“哥本哈根学派”代表性人物。1932年,海森堡因為“创立量子力学以及由此导致的氢的同素异形体的发现”而榮获诺贝尔物理学奖。 他对物理学的主要贡献是给出了量子力学的矩阵形式(矩阵力学),提出了“不确定性原理”(又称“海森堡不确定性原理”)和S矩阵理论等。他的《量子论的物理学原理》是量子力学领域的一部經典著作。.
狄拉克符号
拉克符号或狄拉克標記(Dirac notation)是量子力学中广泛应用于描述量子态的一套标准符号系统。在这套系统中,每一个量子态都被描述为希尔伯特空间中的態向量,定义为右矢(ket):|\psi\rangle;每一个右矢的共軛轉置定义为其左矢(bra):\langle\psi|。 此標記法為狄拉克於1939年将「bracket」(括号)这个词拆开后所造的。 在中國方面,一些旧有的教科书和文献中也将其译为“刁矢”和“刃矢”、或“彳矢”和“亍矢”,现已弃用。.
查看 海森堡繪景和狄拉克符号
相互作用繪景
保羅·狄拉克 在量子力學裏,相互作用繪景(interaction picture),是在薛丁格繪景與海森堡繪景之間的一種表述,為紀念物理學者保羅·狄拉克而又命名為狄拉克繪景。在這繪景裏,描述量子系統的態向量與表達可觀察量的算符都會隨著時間流易而演化。有些實際案例會涉及到因相互作用而使得量子態與可觀察量發生改變,這類案例通常會使用狄拉克繪景。 狄拉克繪景與薛丁格繪景、海森堡繪景不同。在薛丁格繪景裏,描述量子系統的態向量隨著時間流易而演化。在海森堡繪景裏,表達可觀察量的算符會隨著時間流易而演化。 這三種繪景殊途同歸,所獲得的結果完全一致。這是必然的,因為它們都是在表達同樣的物理行為。.
查看 海森堡繪景和相互作用繪景
諧振子
古典力學中,一個諧振子(harmonic oscillator)乃一個系統,當其從平衡位置位移,會感受到一個恢復力F正比於位移x,並遵守虎克定律: 其中k是一個正值常數。 如果F是系統僅受的力,則系統稱作簡諧振子(簡單和諧振子)。而其進行簡諧運動——正中央為平衡點的正弦或餘弦的振動,且振幅與頻率都是常數(頻率跟振幅無關)。 若同時存在一摩擦力正比於速度,則會存在阻尼現象,稱這諧振子為阻尼振子。在這樣的情形,振動頻率小於無阻尼情形,且振幅隨著時間減小。 若同時存在跟時間相關的外力,諧振子則稱作是受驅振子。 力學上的例子包括了單擺(限於小角度位移之近似)、連接到彈簧的質量體,以及聲學系統。其他的相類系統包括了電學諧振子(electrical harmonic oscillator,參見RLC電路)。.
查看 海森堡繪景和諧振子
薛丁格繪景
薛丁格繪景(Schrödinger picture)是量子力學的一種表述,為紀念物理學者埃爾溫·薛丁格而命名。在薛丁格繪景裏,量子系統的態向量隨著時間流易而演化,而像位置、自旋一類的對應於可觀察量的算符則與時間無關。 薛丁格繪景與海森堡繪景、狄拉克繪景不同。在海森堡繪景裏,對應於可觀察量的算符會隨著時間流易而演化,而描述量子系統的態向量則與時間無關。在狄拉克繪景裏,態向量與算符都會隨著時間流易而演化。 這三種繪景殊途同歸,所獲得的結果完全一致。這是必然的,因為它們都是在表達同樣的物理現象。 在薛丁格繪景裏,負責時間演化的算符是一種么正算符,稱為時間演化算符。假設時間從t_0流易到t,而經過這段時間間隔,態向量|\psi(t_0)\rang演化為態向量|\psi(t)\rang,這時間演化過程以方程式表示為 其中,U(t, t_0)是時間演化算符。 假設系統的哈密頓量H不含時,則時間演化算符為 其中,\hbar是約化普朗克常數,指數函數 e^必須通過其泰勒級數計算。 在初級量子力學教科書裏,時常會使用薛丁格繪景。.
查看 海森堡繪景和薛丁格繪景
量子力学
量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.
查看 海森堡繪景和量子力学
量子场论
在理論物理學中,量子场论(Quantum field theory)是由量子力學和狹義相對論互相融合後的物理理論。已被廣泛的應用在粒子物理學和凝聚體物理學中。量子場論為描述多自由度系統,尤其是包含粒子產生和湮滅過程的過程,提供了有效的描述框架。非相對論性的量子場論又稱量子多體理論,主要被應用於凝聚體物理學,比如描述超導性的BCS理論。而相對論性的量子場論則是粒子物理學不可或缺的組成部分。自然界中人類目前所知的基本相互作用有四種:強相互作用、電磁相互作用、弱相互作用和引力。除去引力的話,另外三種相互作用都已找到了合適滿足特定對稱性的量子場論來描述:強作用有量子色動力學;電磁相互作用有量子電動力學,理論框架建立於1920到1950年間,主要的貢獻者為保羅·狄拉克,弗拉迪米爾·福克,沃爾夫岡·泡利,朝永振一郎,施溫格,理查德·費曼和弗里曼·戴森等;弱作用有費米點作用理論。後來弱作用和電磁相互作用實現了形式上的統一,通過希格斯機制產生質量,建立了弱電統一的量子規範理論,即GWS(Glashow, Weinberg, Salam)模型。量子場論成為現代理論物理學的主流方法和工具。 而這些交互作用傳統上是由費曼圖來視覺化,並且提供簡便的計算規則來計算各種多體系統過程。.
查看 海森堡繪景和量子场论
自由粒子
在物理學裏,自由粒子是不被位勢束縛的粒子。在經典力學裏,一個自由粒子所感受到外來的淨力是0。 假若,一個粒子的能量大於在任何地點x\,\!的位勢,E > V(x) \,\!,不會被位勢束縛,則稱此粒子為自由粒子。更強版的定義,還要求位勢為常數V(x).
查看 海森堡繪景和自由粒子
酉矩阵
若一n行n列的複数矩阵U满足 其中I_n\,为n阶单位矩阵,U^\dagger \,为U的共轭转置,则U称为--(又译作--、--。英文:Unitary Matrix, Unitary是歸一或單位的意思)。即,矩阵U为酉矩阵,当且仅当其共轭转置U^\dagger \,为其逆矩阵: 若酉矩阵的元素都是实数,其即为正交矩阵。与正交矩阵G不会改变两个实向量的内积类似, 酉矩阵U不改变两个复向量的内积: 若U \,为n阶方阵,则下列条件等价:.
查看 海森堡繪景和酉矩阵
泊松括號
在數學及经典力學中,泊松括號是哈密顿力學中重要的運算,在哈密頓表述的動力系統中時間演化的定義起着中心角色。在更一般的情形,泊松括号用来定义一个泊松代数,而泊松流形是一个特例。它们都是以西莫恩·德尼·泊松命名的。.
查看 海森堡繪景和泊松括號
波動力學
波動力學是量子力學的一種表述形式,主要是以波函數及其模數的平方去表示物體的狀態及該狀態出現的機率。對於波函數隨時間的變化,是遵從薛丁格方程式。.
查看 海森堡繪景和波動力學
期望值
在概率论和统计学中,一个离散性随机变量的期望值(或数学期望、或均值,亦简称期望,物理学中称为期待值)是试验中每次可能的结果乘以其结果概率的总和。换句话说,期望值像是随机试验在同样的机会下重复多次,所有那些可能狀態平均的结果,便基本上等同“期望值”所期望的數。需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。(换句话说,期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合裡。) 例如,掷一枚公平的六面骰子,其每次「點數」的期望值是3.5,计算如下: \operatorname(X)&.
查看 海森堡繪景和期望值
指数函数
指数函数(Exponential function)是形式為b^x的數學函数,其中b是底數(或稱基數,base),而x是指數(index / exponent)。 現今指數函數通常特指以\mbox為底數的指數函數(即\mbox^x),為数学中重要的函数,也可寫作\exp(x)。这里的\mbox是数学常数,也就是自然对数函数的底数,近似值为2.718281828,又称为欧拉数。 作为实数变量x的函数,y.
查看 海森堡繪景和指数函数
態向量
在量子力學裏,一個量子系統的量子態可以抽象地用態向量來表示。態向量存在於內積空間。定義內積空間為增添了一個額外的內積結構的向量空間。態向量滿足向量空間所有的公理。態向量是一種特殊的向量,它也允許內積的運算。態向量的範度是1,是一個單位向量。標記量子態\psi\,\!的態向量為|\psi\rangle\,\!。 每一個內積空間都有單範正交基。態向量是單範正交基的所有基向量的線性組合: 其中,|e_1\rangle,\,|e_2\rangle,\,\dots,\,|e_n\rangle\,\!是單範正交基的基向量,n\,\!是單範正交基的基數,c_1,\,c_2,\,\dots,\,c_n\,\!是複值的係數,是|\psi\rangle\,\!的分量,c_i\,\!是|\psi\rangle\,\!投射於基向量|e_i\rangle\,\!的分量,也是|\psi\rangle\,\!處於|e_i\rangle\,\!的機率幅。 換一種方法表達: \end\,\!。 在狄拉克標記方法裏,態向量|\psi\rangle\,\!稱為右矢。對應的左矢為\langle\psi|\,\!,是右矢的厄米共軛,用方程式表達為 其中,\dagger\,\!象徵為取厄米共軛。 設定兩個態向量|\alpha\rangle.
查看 海森堡繪景和態向量