徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

正割

指数 正割

正割(Secant,sec)是三角函数的一种。它的定义域不是整个实数集,值域是絕對值大於等于一的实数。它是周期函数,其最小正周期为2 \pi。 正割是三角函数的正函數(正弦、正切、正割、正矢)之一,所以在2k \pi到2 k \pi + \frac的區間之間,函數是遞增的,另外正割函数和餘弦函数互為倒數。 在單位圓上,正割函数位於割線上,因此將此函數命名為正割函数。 和其他三角函數一樣,正割函数一樣可以擴展到複數。.

31 关系: 单位圆复数 (数学)定义域实数导数射影定理三角形三角函数周期函数值域倒数线绝对值直角三角形相交順時針方向餘弦餘割角度象限角距离週期Sec正弦正切正割函數正矢比值旋转整数

单位圆

在数学中,单位圆是指半径为单位长度的圆,通常为欧几里得平面直角坐标系中圆心为(0,0)、半径为1的圆。单位圆对于三角函数和复数的坐标化表示有着重要意义。单位圆通常表示为S1。多维空间中,单位圆可推广为单位球。 如果单位圆上的点 (x, y)位于第一象限,那么x与y是斜边长度为1的直角三角形的两条边,根据勾股定理,x与y满足方程: 由于对于所有的x来说x2.

新!!: 正割和单位圆 · 查看更多 »

复数 (数学)

複數,為實數的延伸,它使任一多項式方程式都有根。複數當中有個「虛數單位」i,它是-1的一个平方根,即i ^2.

新!!: 正割和复数 (数学) · 查看更多 »

定义域

定义域(Domain),是函数自变量所有可取值的集合。给定函数f:A\rightarrow B,其中A被称为是f的定义域,记作D_。f映射到陪域中的所有值的集合称为f的值域,记作f(A)或R_。 例如,函数f(x).

新!!: 正割和定义域 · 查看更多 »

实数

实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.

新!!: 正割和实数 · 查看更多 »

导数

导数(Derivative)是微积分学中重要的基礎概念。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。导数的本质是通过极限的概念对函数进行局部的线性逼近。当函数f的自变量在一点x_0上产生一个增量h时,函數输出值的增量與自變量增量h的比值在h趋于0时的極限如果存在,即為f在x_0处的导数,记作f'(x_0)、\frac(x_0)或\left.\frac\right|_。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。 导数是函数的局部性质。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。如果函数的自变量和取值都是实数的话,那么函数在某一点的导数就是该函数所代表的曲线在這一点上的切线斜率。 对于可导的函数f,x \mapsto f'(x)也是一个函数,称作f的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。.

新!!: 正割和导数 · 查看更多 »

射影定理

射影定理(right triangle altitude theorem),又称欧几里德(Euclid)定理,也称作“第一余弦定理(任意三角形射影定理)”。是指在直角三角形中,斜边上的高是两条直角边在斜边射影的比例中项,直角边是这条直角边在斜边的射影和斜边的比例中项。 射影定理的其他定义为:“平面图形射影面积等于被射影图形的面积乘以该图形所在平面与射影面所夹角的余弦。”,用公式表示为:cos\theta.

新!!: 正割和射影定理 · 查看更多 »

三角形

三角形,又稱三邊形,是由三条线段顺次首尾相连,或不共線的三點兩兩連接,所组成的一个闭合的平面图形,是最基本和最少邊的多边形。 一般用大写英语字母A、B和C为三角形的顶点标号;用小写英语字母a、b和c表示边;用\alpha、\beta和\gamma給角標號,又或者以\angle ABC這樣的顶点标号表示。.

新!!: 正割和三角形 · 查看更多 »

三角函数

三角函数(Trigonometric functions)是数学中常见的一类关于角度的函数。三角函数将直角三角形的内角和它的两个边的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。 常见的三角函数包括正弦函数(\sin)、余弦函数(\cos)和正切函数(\tan或者\operatorname);在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、半正矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。 三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。.

新!!: 正割和三角函数 · 查看更多 »

#重定向 1.

新!!: 正割和一 · 查看更多 »

周期函数

在数学中,周期函数是無論任何独立变量上經過一个确定的周期之后数值皆能重复的函数。我们日常所见的钟表指针以及月亮的月相都呈现出周期性的特点。周期性运动是系统的运动位置呈现周期性的运动。 对于实数或者整数函数来说,周期性意味着按照一定的间隔重复一个特定部分就可以绘制出完整的函数图。如果在函数f中所有的位置x都满足 那么,f就是周期为T的周期函数。非周期函数就是没有类似周期T的函数。 如果周期函数f的周期为T,那么对于f中的任意x以及任意整数n,有 若T.

新!!: 正割和周期函数 · 查看更多 »

值域

在数学中,函数的值域(Range)是由定义域中一切元素所能產生的所有函數值的集合。有时候也称为函数的像。 给定函数f: A\rightarrow B,集合f(A)被称为是f的值域,记为R_。值域不应跟陪域B相混淆。一般来说,值域只是陪域的一个子集。.

新!!: 正割和值域 · 查看更多 »

倒数

數學上,一个数\displaystyle x的倒数(reciprocal),或稱乘法逆元(multiplicative inverse),是指一個与\displaystyle x相乘的积为1的数,记为\displaystyle \tfrac或\displaystyle x^。在抽象代数中,倒数所对应的抽象化概念是乘法群的某个元素的“乘法逆”,也就是相对于群中“乘法”运算的逆元素。注意这个名词只当相应的群中的运算被称为“乘法”后才使用。如果群中的运算被称为“加法”,那么同样的概念称为“加法逆”。乘法逆的具体定义可以参见群的逆元素概念。 汉语中,名词倒数一般用来表示数字的乘法逆,一般在各种数域如:有理数、实数、复数,以及模n的同余类所构成的乘法群中使用。在复数域(实数域)中,每个除了0以外的复数(实数)都存在倒数:只要用某个数自身除1(也就是说用1除以某个数),即可得到它的倒数。用数学记号表示的话: 每个复数(实数)只有一个倒数。一般来说,并不是对所有的代数结构中的乘法运算,每个元素都存在其乘法逆,如对矩阵乘法来说,秩小于阶数的矩阵就没有乘法逆。一个环中的一个元素有乘法逆当且仅当它是可逆元,而它的乘法逆是唯一的当且仅当它不是一个零因子,或者说当它是一个正则元。每个非零元素都有乘法逆的环称为除环。每个非零元素都至多有一个乘法逆的环称为无零因子环。.

新!!: 正割和倒数 · 查看更多 »

线

線的延伸與面化線在幾何學上的定義「點的移動軌跡,具有位置及長度,而無寬度和厚度」。 線在造形中的地位十分重要,因為面的形是由線來界定的,也就是形的輪廓線。不同的線表現不同的意念。粗線有力,細線銳利。線的粗細可產生遠近關係,線還有很強的方向性。垂直線有莊重、上升之感;水平線有靜止、安寧之感;斜線有運動、速度之感;而曲線有自由流動、柔美之感。 繁體字「--」是指物質的--,如「毛--」,中華人民共和國政府視「--」為異體字;繁體字「--」是指非物質的--,如「光--」,中華民國政府視「--」為異體字。目前,這兩者通用。 「--」也是中國的一個罕見姓氏(此處不可寫作「--」),簡化字為「--」。「--」作姓氏時亦不能寫作「--」。 線可以指:.

新!!: 正割和线 · 查看更多 »

绝对值

絕對值用來表示一個數至原點的距離之大小。絕對值的概念也可以定義在複數、有序環以及域上。.

新!!: 正割和绝对值 · 查看更多 »

直角三角形

有一个角为直角的三角形称为直角三角形。在直角三角形中,直角相邻的两条边称为直角边。直角所对的边称为斜边。直角三角形直角所对的边也叫作「弦」。若兩條直角邊不一樣長,短的那條邊叫作「勾」,長的那條邊叫作「股」。 直角三角形满足畢氏定理(勾股定理),即两直角边边长的平方和等于斜边长的平方。直角三角形各邊和角之間的關係也是三角學的基礎。 直角三角形的外心是斜边中点;其垂心是直角顶点。 若直角三角形的三邊均為整數,稱為畢氏三角形,其邊長稱為勾股數。 埃及將邊長比例為3:4:5的直角三角形称为埃及三角形。.

新!!: 正割和直角三角形 · 查看更多 »

相交

在数学中,相交是两个几何图形之间关系的一种。两个图形相交是指它们有公共的部分,或者说同时属于两者的点的集合不是空集。若两个几何图形在某个地方有且只有一个交点,则可以称为相切而不是相交。如果两个图形完全重合,则一般不称为相交。 集合论中,两个集合相交是指它们的交集不是空集。.

新!!: 正割和相交 · 查看更多 »

順時針方向

以順時針方向運行指依從時針移動的方向運行(如右上圖),即可視為由右上方向下,然後轉向左,再回到上。數學上,在直角坐标系以方程式x.

新!!: 正割和順時針方向 · 查看更多 »

餘弦

余弦是三角函数的一种。它的定义域是整个实数集,值域是。它是周期函数,其最小正周期为2π。在自变量为2nπ(n为整数)时,该函数有极大值1;在自变量为(2n+1)π时,该函数有极小值-1。余弦函数是偶函数,其图像关于y轴对称。.

新!!: 正割和餘弦 · 查看更多 »

餘割

割是三角函数的一种。它的定义域是整个实数集,值域是csc x≥1。它是周期函数,其最小正周期为2π。.

新!!: 正割和餘割 · 查看更多 »

角度

#重定向 度 (角).

新!!: 正割和角度 · 查看更多 »

象限角

象限角,又称象限(英文:Quadrant意思是一圓之四分一等份),是直角坐標系(笛卡爾坐標系)中,主要應用於三角學和複數的阿根圖(複平面)中的座標系。.

新!!: 正割和象限角 · 查看更多 »

距离

距離是對兩個物體或位置間相距多遠的數值描述,是個不具方向性的純量,且不為負值。 在物理或日常使用中,距離可以是個物理長度,或某個估算值,指人、動物、交通工具或光線之類的媒介由起點至終點所經過的路徑長。 在數學裡,距離是個稱之為度量的函數,為物理距離這個概念之推廣。度量是個函數,依據一組特定的規則作用,且有具體的方法可用來描述一些空間內的元素互相「接近」或「遠離」。除了歐氏空間內常見的距離定義外,在圖論與統計學等數學領域裡,亦存在其他的「距離」概念。在大多數的情形下,「從 A 至 B 的距離」與「從 B 至 A 的距離」的意義是相同的。.

新!!: 正割和距离 · 查看更多 »

週期

週期(Period)指的是完成往復運動一次所需的時間,物理學上通常以T表示,單位為s。 週期為頻率(物理學上通常以\,f\,表示)的倒數:T.

新!!: 正割和週期 · 查看更多 »

Sec

#重定向 正割.

新!!: 正割和Sec · 查看更多 »

正弦

在數學中,正弦(英語:sine、縮寫sin)是一種週期函數,是三角函数的一種。它的定义域是整个实数集,值域是。它是周期函数,其最小正周期为2π。在自变量为(4n+1)π/2(n为整数)时,该函数有极大值1;在自变量为(4n+3)π/2时,该函数有极小值-1。正弦函数是奇函数,其图像关于原点对称。.

新!!: 正割和正弦 · 查看更多 »

正切

正切(Tangent,tan,东欧国家将其写作tg)是三角函数的一种。它的值域是整个实数集,定义域是整个。它是周期函数,其最小正周期为π。正切函数是奇函数。.

新!!: 正割和正切 · 查看更多 »

正割函數

#重定向 正割.

新!!: 正割和正割函數 · 查看更多 »

正矢

正矢(英文:Versine、Versed sine),在三角函数之中被定義為\textrm \theta.

新!!: 正割和正矢 · 查看更多 »

比值

#重定向 比率.

新!!: 正割和比值 · 查看更多 »

旋转

旋转在几何和线性代数中是描述刚体围绕一个固定点的运动的在平面或空间中的变换。旋转不同于没有固定点的平移,和翻转变换的形体的反射。旋转和上面提及的变换是等距的,它们保留在任何两点之间的距离在变换之后不变。.

新!!: 正割和旋转 · 查看更多 »

整数

整数,是序列中所有的数的统称,包括负整数、零(0)与正整数。和自然數一樣,整數也是一個可數的無限集合。這個集合在数学上通常表示粗體Z或\mathbb,源于德语单词Zahlen(意为“数”)的首字母。 在代數數論中,這些屬於有理數的一般整數會被稱為有理整數,用以和高斯整數等的概念加以區分。.

新!!: 正割和整数 · 查看更多 »

重定向到这里:

正割比

传出传入
嘿!我们在Facebook上吧! »