徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

正則變換

指数 正則變換

在哈密頓力學裏,正則變換(canonical transformation)是一種正則坐標的改變,(\mathbf,\ \mathbf) \rightarrow (\mathbf,\ \mathbf),而同時維持哈密頓方程的形式,雖然哈密頓量可能會改變。正則變換是哈密頓-亞可比方程式與刘维尔定理的基礎。.

20 关系: 不變量廣義坐標廣義動量刘维尔定理 (哈密顿力学)哈密頓-亞可比方程式哈密頓原理哈密顿力学矩阵相空間顯性辛几何辛矩陣辛群辛標記雅可比矩阵正則坐標正則座標正則變換生成函數泊松括號时间

不變量

假若,在某種變換下,一個系統的某物理量保持不變,則稱此物理量為不變量(invariant)。例如,在伽利略變換下,時間是個不變量;在勞侖茲變換下,光速、靜質量、電荷量等等,都是不變量。這類變換表達出不同觀察者的參考系之間的關係。例如,在火車站台的查票員的參考系,與在移動中的火車內的乘客的參考系,這兩個參考系之間的關係。 假若,在某種變換下,一個系統的某物理性質保持不變,則稱此物理性質為不變性(invariance)。例如,在內積空間內,對於任意旋轉,向量的內積保持不變,稱此性質為旋轉不變性。 根據諾特定理,對於一種變換,每一種不變性代表一條基本的守恆定律。例如,對於平移變換的不變性導致動量守恆定律,對於的不變性導致能量守恆定律。 在現代理論物理裏,不變性是很重要的概念。許多理論是由對稱性與不變性表達。 在張量數學裏,協變性與反變性是不變性的數學性質的推廣。在電磁學和相對論裏,時常會應用到這些概念。.

新!!: 正則變換和不變量 · 查看更多 »

廣義坐標

#重定向 廣義座標.

新!!: 正則變換和廣義坐標 · 查看更多 »

廣義動量

拉格朗日力學與哈密頓力學時常涉及廣義動量。這是因為採用廣義坐標有許多優點。而廣義動量是正則共軛於廣義坐標的物理量,又稱為共軛動量。 假設一個物理系統的廣義坐標是 (q_1,\ q_2,\ q_3,\ \dots,\ q_N)\,\! ,則廣義速度為 (\dot_1,\ \dot_2,\ \dot_3,\ \dots,\ \dot_N)\,\! 。表示廣義動量為 (p_1,\ p_2,\ p_3,\ \dots,\ p_N)\,\! 。定義廣義動量為拉格朗日量 \mathcal\,\! 隨廣義速度的導數:.

新!!: 正則變換和廣義動量 · 查看更多 »

刘维尔定理 (哈密顿力学)

在物理学中,刘维尔定理(Liouville's theorem)是经典统计力学与哈密顿力学中的关键定理。该定理断言相空间的分布函数沿着系统的轨迹是常数——即给定一个系统点,在相空间游历过程中,该点邻近的系统点的密度关于时间是常数。 它以法国数学家约瑟夫·刘维尔命名。这也是辛拓扑与遍历论中的有关数学结果。.

新!!: 正則變換和刘维尔定理 (哈密顿力学) · 查看更多 »

哈密頓-亞可比方程式

#重定向 哈密頓-雅可比方程式.

新!!: 正則變換和哈密頓-亞可比方程式 · 查看更多 »

哈密頓原理

在物理學裏,哈密頓原理(Hamilton's principle)是愛爾蘭物理學家威廉·哈密頓於1833年發表的關於平穩作用量原理的表述。哈密頓原理闡明,一個物理系統的拉格朗日函數,所構成的泛函的變分問題解答,可以表達這物理系統的動力行為。拉格朗日函數又稱為拉格朗日量,包含了這物理系統所有的物理內涵。這泛函稱為作用量。哈密頓原理提供了一種新的方法來表述物理系統的運動。不同於牛頓運動定律的微分方程式方法,這方法以積分方程式來設定系統的作用量,在作用量平穩的要求下,使用變分法來計算整個系統的運動方程式。 雖然哈密頓原理本來是用來表述經典力學,這原理也可以應用於經典場,像電磁場或重力場,甚至可以延伸至量子場論等等。.

新!!: 正則變換和哈密頓原理 · 查看更多 »

哈密顿力学

哈密顿力学是哈密顿于1833年建立的经典力学的重新表述,它由拉格朗日力学演变而来。拉格朗日力学是经典力学的另一表述,由拉格朗日于1788年建立。哈密顿力学与拉格朗日力学不同的是前者可以使用辛空间而不依赖于拉格朗日力学表述。关于这点请参看其数学表述。 适合用哈密顿力学表述的动力系统称为哈密顿系统。.

新!!: 正則變換和哈密顿力学 · 查看更多 »

矩阵

數學上,一個的矩陣是一个由--(row)--(column)元素排列成的矩形阵列。矩陣--的元素可以是数字、符号或数学式。以下是一个由6个数字元素构成的2--3--的矩阵: 大小相同(行数列数都相同)的矩阵之间可以相互加减,具体是对每个位置上的元素做加减法。矩阵的乘法则较为复杂。两个矩阵可以相乘,当且仅当第一个矩阵的--数等于第二个矩阵的--数。矩阵的乘法满足结合律和分配律,但不满足交换律。 矩阵的一个重要用途是解线性方程组。线性方程组中未知量的系数可以排成一个矩阵,加上常数项,则称为增广矩阵。另一个重要用途是表示线性变换,即是诸如.

新!!: 正則變換和矩阵 · 查看更多 »

相空間

在數學與物理學中,相空間是一個用以表示出一系統所有可能狀態的空間;系統每個可能的狀態都有一相對應的相空間的點。.

新!!: 正則變換和相空間 · 查看更多 »

顯性

#重定向 显性.

新!!: 正則變換和顯性 · 查看更多 »

辛几何

辛几何(Symplectic geometry),也叫辛拓扑(Symplectic topology),是微分几何的一个分支。其研究對象為辛流形,亦即带有闭非退化2-形式的微分流形。辛拓扑源于经典力学的哈密顿表述,其中特定经典系统的相空间有辛流形的结构。 辛拓扑和研究有非退化对称2阶张量(称为度量张量)的流形的黎曼几何有一些相似和不同之处。不像黎曼的情况,辛流形没有像曲率那样的局部不变量。这是达布定理的一个结果,表明每一对辛流形是局部同构的。另一个和黎曼几何的区别是不是所有的微分流形可以接受一个辛形式;有一些特定的拓扑限制。首先,流形必须是偶数维的。辛拓扑的很多工作就是以研究哪些流形可以有辛结构为中心的。 每个凯勒流形也是一个辛流形。直到1970年代,辛专家们还不确信是否有任何紧非Kähler辛流形存在,但从那以后又很多例子被构造出来(第一个由William Thurston给出);特别的,Robert Gompf证明每个有限表示群都可以作为辛4维流形的基本群出现,这和凯勒的情形完全不同。 可以说大部分辛流形都是非凯勒的;所以没有和辛形式相容的可积複结构。但是 Mikhail Gromov给出了一个重要的发现,就是辛流形可以接受很多相容的殆複结构,所以它们满足複流形的所有假设,"除了"坐标变换函数必须是全纯的这一条。 以几乎複结构相容的映射到辛流形的黎曼曲面称为伪全纯曲线,格罗莫夫证明了该类曲线的紧致性定理;这个结构导致了辛拓扑一个很大的子学科的发展。从格罗莫夫的理论产生的结果包括关于球到柱的辛嵌入的格罗莫夫非压缩定理,和关于哈密顿流的不动点的个数的阿尔诺德的一个猜想的证明。这是由从Andreas Floer开始的几个研究者(逐步推广到更一般的情形)所证明的,Floer用格罗莫夫的方法引入了现在称为Floer同调的概念。 伪全纯曲线也是辛不变量的一个来源,这种不变量称为Gromov-Witten不变量,原则上可以用来区分两个不同的辛流形。.

新!!: 正則變換和辛几何 · 查看更多 »

辛矩陣

在數學中,辛矩阵是指一個2n \times 2n的矩阵M(通常佈於實數或複數域上),使之滿足 其中M^T表M的轉置矩陣,而\Omega是一個固定的可逆斜對稱矩陣;這類矩陣在適當的變化後皆能表為 \begin 0 & I_n \\ -I_n & 0 \\ \end 或 \begin0 & 1\\ -1 & 0\end & & 0 \\ 0 & & \begin0 & 1 \\ -1 & 0\end \end 兩者的差異僅在於基的置換,其中I_n是n \times n 單位矩陣。此外,\Omega 行列式值等於一,且其逆矩陣等於-\Omega。.

新!!: 正則變換和辛矩陣 · 查看更多 »

辛群

在數學中,辛群可以指涉兩類不同但關係密切的群。在本條目中,我們分別稱之為Sp(2n,F)與Sp(n)。後者有時也被稱作緊緻辛群以資區別。許多作者偏好不同的記法,通常是差個二的倍數。本條目採用的記法與矩陣的大小相稱。.

新!!: 正則變換和辛群 · 查看更多 »

辛標記

在哈密頓力學裏,因為哈密頓方程式對於廣義坐標 \mathbf\,\! 與廣義動量 \mathbf\,\! 的運算在正負號上並不對稱,必須用兩個方程式來表示: 這裏, \mathcal\,\! 是哈密頓量。 辛標記提供了一種既簡單,又有效率的標記方法來展示方程式及數學運算。辛標記的英文名 「Symplectic notation」 最先是德國著名數學家赫尔曼·外尔提出的。 Symplectic 這字原來在希臘文是糾纏或編結的意思;用在這裏主要是形容廣義坐標和廣義動量互相編結在一起的情況。 設定一個 2N\times 1\,\! 的豎矩陣 \boldsymbol\,\!: 此矩陣上半段是廣義坐標、下半段是廣義動量、T\,\! 代表轉置運算。我們也可以將 \boldsymbol\,\! 視為一個向量。 定義辛矩陣 \boldsymbol\,\! 為一個斜對稱的 2N\times 2N\,\! 方塊矩陣: 這裏,\boldsymbol\,\! 是由 4 個 N\times N\,\! 零矩陣\mathbf與單位矩陣\mathbf組成。 這樣,哈密頓方程式可以簡易的表.

新!!: 正則變換和辛標記 · 查看更多 »

雅可比矩阵

在向量分析中,雅可比矩阵是函數的一阶偏导数以一定方式排列成的矩阵,其行列式称为雅可比行列式。 在代数几何中,代数曲线的雅可比行列式表示雅可比簇:伴随该曲线的一个代數群,曲线可以嵌入其中。 它们全部都以数学家卡爾·雅可比命名。.

新!!: 正則變換和雅可比矩阵 · 查看更多 »

正則坐標

#重定向 正則座標.

新!!: 正則變換和正則坐標 · 查看更多 »

正則座標

在古典力學裏,正則座標是相空間的一種座標。正則座標很自然的出現於哈密頓力學的研究。正如同哈密頓力學的被辛幾何廣義化,正則變換也被切觸變換廣義化。如此在古典力學裏,正則座標的19世紀定義也被廣義化,成為更抽象地以餘切叢為基礎的20世紀定義。 這篇文章解釋在古典力學裏的正則座標。在量子力學裏,也有一個密切相關的概念;欲知細節,請參閱與正則對易關係。.

新!!: 正則變換和正則座標 · 查看更多 »

正則變換生成函數

在哈密頓力學裏,當計算正則變換時,生成函數扮演的角色,好似在兩組正則坐標 (\mathbf,\ \mathbf) ,(\mathbf,\ \mathbf) 之間的一座橋。為了要保證正則變換的正確性 ,採取一種間接的方法,稱為生成函數方法。這兩組變數必須符合方程式 其中,\mathbf.

新!!: 正則變換和正則變換生成函數 · 查看更多 »

泊松括號

在數學及经典力學中,泊松括號是哈密顿力學中重要的運算,在哈密頓表述的動力系統中時間演化的定義起着中心角色。在更一般的情形,泊松括号用来定义一个泊松代数,而泊松流形是一个特例。它们都是以西莫恩·德尼·泊松命名的。.

新!!: 正則變換和泊松括號 · 查看更多 »

时间

時間是一种尺度,在物理定义是标量,藉著时间,事件发生之先后可以按过去-现在-未来之序列得以确定(时间点),也可以衡量事件持續的期間以及事件之間和间隔长短(时间段) 。時間是除了空間三個維度以外的第四維度。 長久以來,時間一直是宗教、哲學及科學領域的研究主題之一,但學者們尚且無法為時間找到一個可以適用於各領域、具有一致性且又不循環的定義 。然而在商業、工業、體育、科學及表演藝術等領域都有一些各自來標示及度量時間的方法 108 pages 。一些簡單,爭議較小的定義包括「時間是時鐘量測的物理量。」及「時間使得所有事情不會同時發生。」, 哲學家對於時間有兩派不同的觀點:一派認為時間是宇宙的基本結構,是一個會依序列方式出現的維度,像艾萨克·牛顿就對時間有這樣的觀點。包括戈特弗里德·莱布尼茨及伊曼努爾·康德在內的另一派認為時間不是任何一種已經存在的維度,也不是任何會「流動」的實存物,時間只是一種心智的概念,配合空間和數可以讓人類對事件進行排序和比較。換句話說,時間不過是人為便於思考宇宙,而對物質運動劃分,是一種人定規則。例如:愛因斯坦就曾運用相對論的概念來描述比喻時間對心理層面上的影響,藉此解釋時間並非是絕對的。.

新!!: 正則變換和时间 · 查看更多 »

重定向到这里:

典范变换

传出传入
嘿!我们在Facebook上吧! »