目录
卷积
在泛函分析中,捲積、疊積、--積或旋積,是通过两个函数f和g生成第三个函数的一种数学算子,表徵函数f与经过翻转和平移的g的乘積函數所圍成的曲邊梯形的面積。如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是“滑動平均”的推广。.
查看 模拟信号处理和卷积
复数 (数学)
複數,為實數的延伸,它使任一多項式方程式都有根。複數當中有個「虛數單位」i,它是-1的一个平方根,即i ^2.
對數尺度
對數尺度(logarithmic scale)是一個非線性的測量尺度,用在數量有較大範圍的差異時。像黎克特制地震震級、聲學中的音量、光學中的光強度、及溶液的PH值等。 對數尺度是以數量級為基礎,不是一般的,因此每個刻度之間的商為一定值。.
查看 模拟信号处理和對數尺度
信号处理
在计算机科学、药物分析、电子学等学科中,信号处理(signal processing)是指对信号表示、变换、运算等进行处理的过程。 信号处理可以用于沟通人类之间,或人与机器之间的联系;用以探测我们周围的环境,并揭示出那些不易观察到的状态和构造细节,以及用来控制和利用能源与信息.例如,我们可能希望分开两个或多个多少有些混在一起的信号,或者想增强信号模型中的某些成分或参数。 几十年来,信号处理在诸如语音与資料通訊、生物医学工程、声学、声呐、雷达、地震、石油勘探、仪器仪表、机器人、日用电子产品以及其它很多的这样一些广泛的领域内起着关键的作用。.
查看 模拟信号处理和信号处理
分貝
分貝(decibel)是量度兩個相同單位之數量比例的單位,主要用於度量聲音強度,常用dB表示。「分」(deci-)指十分之一,個位是「貝」或「貝爾」(bel,紀念發明家亞歷山大·格拉漢姆·貝爾),但一般只用分貝。 常用的空气参考声压为p_.
查看 模拟信号处理和分貝
傅里叶变换
傅里叶变换(Transformation de Fourier、Fourier transform)是一种線性积分变换,用于信号在时域(或空域)和频域之间的变换,在物理学和工程学中有许多应用。因其基本思想首先由法国学者约瑟夫·傅里叶系统地提出,所以以其名字来命名以示纪念。实际上傅里叶变换就像化学分析,确定物质的基本成分;信号来自自然界,也可对其进行分析,确定其基本成分。 经傅里叶变换生成的函数 \hat f 称作原函数 f 的傅里叶变换、亦称频谱。在許多情況下,傅里叶变换是可逆的,即可通过 \hat f 得到其原函数 f。通常情况下,f 是实数函数,而 \hat f 则是复数函数,用一个复数来表示振幅和相位。 “傅里叶变换”一词既指变换操作本身(将函数 f 进行傅里叶变换),又指该操作所生成的复数函数(\hat f 是 f 的傅里叶变换)。.
查看 模拟信号处理和傅里叶变换
电流
電流(courant électrique; elektrischer Strom; electric current)是电荷的平均定向移动。电流的大小称为电流强度,是指单位时间内通过导线某一截面的电荷,每秒通过1库仑的電荷量稱为1安培。安培是國際單位制七個基本單位之一。安培計是專門測量電流的儀器 。 有很多種承載電荷的載子,例如,導電體內可移動的電子、電解液內的離子、電漿內的電子和離子、強子內的夸克。這些載子的移動,形成了電流。 有一些效應和電流有關,例如電流的熱效應,根據安培定律,電流也會產生磁場,馬達、電感和發電機都和此效應有關。.
查看 模拟信号处理和电流
頻域
在電子學、控制系統及統計學中,頻域(frequency domain)是指在對函數或信號進行分析時,分析其和頻率有關部份,而不是和時間有關的部份,和時域一詞相對。 函數或信號可以透過一對數學的運算子在時域及頻域之間轉換。例如傅里葉變換可以將一個時域信號轉換成在不同頻率下對應的振幅及相位,其頻譜就是時域信號在頻域下的表現,而反傅里葉變換可以將頻譜再轉換回時域的信號。.
查看 模拟信号处理和頻域
電壓
電壓(Voltage,electric tension或 electric pressure),也稱作電位差(electrical potential difference),是衡量单位电荷在静电场中由于電勢不同所產生的能量差的物理量。此概念與水位高低所造成的「水壓」相似。需要指出的是,“电压”一词一般只用于电路当中,“電動勢”和“电位差”则普遍应用于一切电现象当中。 電壓的國際單位是伏特(V)。1伏特等於對每1庫侖的電荷做了1焦耳的功,即U(V).
查看 模拟信号处理和電壓
電荷
在電磁學裡,電荷(electric charge)是物質的一種物理性質。稱帶有電荷的物質為「帶電物質」。兩個帶電物質之間會互相施加作用力於對方,也會感受到對方施加的作用力,所涉及的作用力遵守庫侖定律。电荷分为两种,「正电荷」与「负电荷」。带有正电荷的物质称为「带正电」;带有负电荷的物质称为「带负电」。假若两个物质都带有正电或都带有负电,则称这两个物质「同电性」,否则称这两个物质「异电性」。两个同电性物质会相互感受到对方施加的排斥力;两个异电性物质会相互感受到对方施加的吸引力。 电荷是许多次原子粒子所拥有的一种基本守恒性质。称带有电荷的粒子为「带电粒子」。电荷决定了带电粒子在电磁方面的物理行为。静止的带电粒子会产生电场,移动中的带电粒子会产生电磁场,带电粒子也会被电磁场所影响。一个带电粒子与电磁场之间的相互作用称为电磁力或电磁交互作用。这是四种基本交互作用中的一种。.
查看 模拟信号处理和電荷
連續函數 (拓撲學)
在拓撲學和數學的相關領域裡,連續函數是指在拓撲空間之間的一種態射。直觀上來說,其為一個函數f,其中每一群在f(x)附近的點都會含有在x附近的一群點之值。對一個一般的拓撲空間來說,這是指f(x)的鄰域總會包含著x之鄰域的值。 在一個度量空間(如實數)裡,這是指在f(x)一定距離內的點總會包含著在x某些距離內的所有點。.
模擬信號
模拟信号(analog signal),是指在时域上数学形式为连续函数的信号。与模拟信号对应的是数字信号,后者采取分立的逻辑值,而前者可以取得连续值。模拟信号的概念常常在涉及电的领域中被使用,不过经典力学、气动力学(pneumatic)、水力学等学科有时也会使用模拟信号的概念。.
查看 模拟信号处理和模擬信號
波德圖
波德圖(Bode plot,“Bode”的英文發音類似Boh-dee,荷蘭文的發音則類似Bow-dah),又名伯德图、波特图,是線性非時變系統的傳遞函數對頻率的半對數座標圖,其橫軸頻率以對數尺度表示,利用波德圖可以看出系統的頻率響應。波德圖一般是由二張圖組合而成,一張幅頻圖表示頻率響應增益的分貝值對頻率的變化,另一張相頻圖則是頻率響應的相位對頻率的變化。 波德圖可以用電腦軟體(如MATLAB)或儀器繪製,也可以自行繪製。利用波德圖可以看出在不同頻率下,系統增益的大小及相位,也可以看出大小及相位隨頻率變化的趨勢。 波德圖的圖形和系統的增益,極點、零點的個數及位置有關,只要知道相關的資料,配合簡單的計算就可以畫出近似的波德圖,這是使用波德圖的好處。.
查看 模拟信号处理和波德圖
收敛半径
收敛半径是数学中与幂级数有关的概念。一个幂级数的收敛半径是一个非负的扩展实数(包括无穷大)。收敛半径表示幂级数收敛的范围。在收敛半径内的紧集上,幂级数对应的函数一致收敛,并且幂级数就是此函数展开得到的泰勒级数。但是在收敛半径上幂级数的敛散性是不确定的。.
查看 模拟信号处理和收敛半径
数字信号处理
数字信号处理(digital signal processing),简称DSP,是指用数学和数字计算来解决问题。大学里,数字信号处理常指用数字表示和解决问题的理论和技巧;而DSP也是数字信号处理器(digital signal processor)的简称,是一种可编程计算机芯片,常指用数字表示和解决问题的技术和芯片。 数字信号处理的目的是对真实世界的模拟信号进行加工和处理。因此在数字信号处理前,模拟信号要用模数转换器(A-D轉換器)变成数字信号;经数字信号处理后的数字信号往往要用数模转换器(D-A轉換器)变回模拟信号,才能适应真实世界的应用。 数字信号处理的算法需要用计算机或专用处理设备如数字信号处理器、专用集成电路等来实现。处理器是用乘法、加法、延时来处理信号,是0和1的数字运算,比模拟信号处理的电路稳定、准确、抗干扰、灵活。.
拉普拉斯变换
拉普拉斯变换(Laplace transform)是应用数学中常用的一种积分变换,又名拉氏轉換,其符號為 \displaystyle\mathcal \left\。拉氏變換是一個線性變換,可將一個有引數實數 t(t \ge 0) 的函數轉換為一個引數為複數 s 的函數: 拉氏變換在大部份的應用中都是對射的,最常見的 f(t) 和 F(s) 組合常印製成表,方便查閱。拉普拉斯变换得名自法國天文學家暨數學家皮埃尔-西蒙·拉普拉斯(Pierre-Simon marquis de Laplace),他在機率論的研究中首先引入了拉氏變換。 拉氏變換和傅里叶变换有關,不過傅里叶变换將一個函數或是信號表示為許多弦波的疊加,而拉氏變換則是將一個函數表示為許多矩的疊加。拉氏變換常用來求解微分方程及積分方程。在物理及工程上常用來分析線性非時變系統,可用來分析電子電路、諧振子、光学仪器及機械設備。在這些分析中,拉氏變換可以作時域和頻域之間的轉換,在時域中輸入和輸出都是時間的函數,在頻域中輸入和輸出則是複變角頻率的函數,單位是弧度每秒。 對於一個簡單的系統,拉氏變換提供另一種系統的描述方程,可以簡化分析系統行為的時間。像時域下的線性非時變系統,在頻域下會轉換為代數方程,在時域下的捲積會變成頻域下的乘法。.