我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

傅里叶变换和模拟信号处理

快捷方式: 差异相似杰卡德相似系数参考

傅里叶变换和模拟信号处理之间的区别

傅里叶变换 vs. 模拟信号处理

傅里叶变换(Transformation de Fourier、Fourier transform)是一种線性积分变换,用于信号在时域(或空域)和频域之间的变换,在物理学和工程学中有许多应用。因其基本思想首先由法国学者约瑟夫·傅里叶系统地提出,所以以其名字来命名以示纪念。实际上傅里叶变换就像化学分析,确定物质的基本成分;信号来自自然界,也可对其进行分析,确定其基本成分。 经傅里叶变换生成的函数 \hat f 称作原函数 f 的傅里叶变换、亦称频谱。在許多情況下,傅里叶变换是可逆的,即可通过 \hat f 得到其原函数 f。通常情况下,f 是实数函数,而 \hat f 则是复数函数,用一个复数来表示振幅和相位。 “傅里叶变换”一词既指变换操作本身(将函数 f 进行傅里叶变换),又指该操作所生成的复数函数(\hat f 是 f 的傅里叶变换)。. 模拟信号处理(analog signal processing)是指对连续模擬信號采用模拟处理(与通过数字处理进行信号处理的离散数字信号处理相对)的方法的任何信号处理过程。“模拟”意味着数学上是值域连续的。这与使用一系列离散量来表示信号的“數位”不同。模拟值通常表示为电子设备中的電壓、电流或器件周围的電荷。影响这种物理量的误差或噪声,都将表示为对应的信号的误差和噪声。 模拟信号处理的例子包括扬声器分频器,音响上的“低音”、“高音”和“音量”控制,和电视上的“色调”控制。常见的模拟处理元件包括电容器、电阻器、电感器和晶体管。.

之间傅里叶变换和模拟信号处理相似

傅里叶变换和模拟信号处理有(在联盟百科)5共同点: 卷积信号处理頻域数字信号处理拉普拉斯变换

卷积

在泛函分析中,捲積、疊積、--積或旋積,是通过两个函数f和g生成第三个函数的一种数学算子,表徵函数f与经过翻转和平移的g的乘積函數所圍成的曲邊梯形的面積。如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是“滑動平均”的推广。.

傅里叶变换和卷积 · 卷积和模拟信号处理 · 查看更多 »

信号处理

在计算机科学、药物分析、电子学等学科中,信号处理(signal processing)是指对信号表示、变换、运算等进行处理的过程。 信号处理可以用于沟通人类之间,或人与机器之间的联系;用以探测我们周围的环境,并揭示出那些不易观察到的状态和构造细节,以及用来控制和利用能源与信息.例如,我们可能希望分开两个或多个多少有些混在一起的信号,或者想增强信号模型中的某些成分或参数。 几十年来,信号处理在诸如语音与資料通訊、生物医学工程、声学、声呐、雷达、地震、石油勘探、仪器仪表、机器人、日用电子产品以及其它很多的这样一些广泛的领域内起着关键的作用。.

信号处理和傅里叶变换 · 信号处理和模拟信号处理 · 查看更多 »

頻域

在電子學、控制系統及統計學中,頻域(frequency domain)是指在對函數或信號進行分析時,分析其和頻率有關部份,而不是和時間有關的部份,和時域一詞相對。 函數或信號可以透過一對數學的運算子在時域及頻域之間轉換。例如傅里葉變換可以將一個時域信號轉換成在不同頻率下對應的振幅及相位,其頻譜就是時域信號在頻域下的表現,而反傅里葉變換可以將頻譜再轉換回時域的信號。.

傅里叶变换和頻域 · 模拟信号处理和頻域 · 查看更多 »

数字信号处理

数字信号处理(digital signal processing),简称DSP,是指用数学和数字计算来解决问题。大学里,数字信号处理常指用数字表示和解决问题的理论和技巧;而DSP也是数字信号处理器(digital signal processor)的简称,是一种可编程计算机芯片,常指用数字表示和解决问题的技术和芯片。 数字信号处理的目的是对真实世界的模拟信号进行加工和处理。因此在数字信号处理前,模拟信号要用模数转换器(A-D轉換器)变成数字信号;经数字信号处理后的数字信号往往要用数模转换器(D-A轉換器)变回模拟信号,才能适应真实世界的应用。 数字信号处理的算法需要用计算机或专用处理设备如数字信号处理器、专用集成电路等来实现。处理器是用乘法、加法、延时来处理信号,是0和1的数字运算,比模拟信号处理的电路稳定、准确、抗干扰、灵活。.

傅里叶变换和数字信号处理 · 数字信号处理和模拟信号处理 · 查看更多 »

拉普拉斯变换

拉普拉斯变换(Laplace transform)是应用数学中常用的一种积分变换,又名拉氏轉換,其符號為 \displaystyle\mathcal \left\。拉氏變換是一個線性變換,可將一個有引數實數 t(t \ge 0) 的函數轉換為一個引數為複數 s 的函數: 拉氏變換在大部份的應用中都是對射的,最常見的 f(t) 和 F(s) 組合常印製成表,方便查閱。拉普拉斯变换得名自法國天文學家暨數學家皮埃尔-西蒙·拉普拉斯(Pierre-Simon marquis de Laplace),他在機率論的研究中首先引入了拉氏變換。 拉氏變換和傅里叶变换有關,不過傅里叶变换將一個函數或是信號表示為許多弦波的疊加,而拉氏變換則是將一個函數表示為許多矩的疊加。拉氏變換常用來求解微分方程及積分方程。在物理及工程上常用來分析線性非時變系統,可用來分析電子電路、諧振子、光学仪器及機械設備。在這些分析中,拉氏變換可以作時域和頻域之間的轉換,在時域中輸入和輸出都是時間的函數,在頻域中輸入和輸出則是複變角頻率的函數,單位是弧度每秒。 對於一個簡單的系統,拉氏變換提供另一種系統的描述方程,可以簡化分析系統行為的時間。像時域下的線性非時變系統,在頻域下會轉換為代數方程,在時域下的捲積會變成頻域下的乘法。.

傅里叶变换和拉普拉斯变换 · 拉普拉斯变换和模拟信号处理 · 查看更多 »

上面的列表回答下列问题

傅里叶变换和模拟信号处理之间的比较

傅里叶变换有82个关系,而模拟信号处理有16个。由于它们的共同之处5,杰卡德指数为5.10% = 5 / (82 + 16)。

参考

本文介绍傅里叶变换和模拟信号处理之间的关系。要访问该信息提取每篇文章,请访问: