徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

拉格朗日乘数

指数 拉格朗日乘数

在数学中的最优化问题中,拉格朗日乘数法(以数学家约瑟夫·拉格朗日命名)是一种寻找多元函数在其变量受到一个或多个条件的约束时的极值的方法。这种方法可以将一个有n个变量与k个约束条件的最优化问题转换为一个解有n + k个变量的方程组的解的问题。这种方法中引入了一个或一组新的未知数,即拉格朗日乘数,又称拉格朗日乘子,或拉氏乘子,它们是在转换后的方程,即约束方程中作为梯度(gradient)的线性组合中各个向量的系数。 比如,要求f(x, y) \,在g(x, y).

28 关系: 偏导数卡羅需-庫恩-塔克條件变分法向量影子价格作用量哈密頓原理函数全微分约瑟夫·拉格朗日线性组合经济学熵 (信息论)鞍點變數边际效用链式法则自变量极值梯度概率分布消费者最优化方程数学效用拉格朗日力学拉格朗日方程式

偏导数

在数学中,一个多变量的函数的偏导数是它关于其中一个变量的导数,而保持其他变量恒定(相对于全导数,在其中所有变量都允许变化)。偏导数在向量分析和微分几何中是很有用的。 函数f关于变量x的偏导数写为f_x^或\frac。偏导数符号\partial是全导数符号 d的变体,这个符号是阿德里安-马里·勒让德引入的,并在雅可比的重新引入后得到普遍接受。.

新!!: 拉格朗日乘数和偏导数 · 查看更多 »

卡羅需-庫恩-塔克條件

在數學中,卡羅需-库恩-塔克條件(英文原名:Karush-Kuhn-Tucker Conditions常見別名:Kuhn-Tucker,KKT條件,Karush-Kuhn-Tucker最優化條件,Karush-Kuhn-Tucker條件,Kuhn-Tucker最優化條件,Kuhn-Tucker條件)是在满足一些有规则的条件下,一個非線性規劃(Nonlinear Programming)問題能有最優化解法的一個必要和充分條件。這是一個廣義化拉格朗日乘數的成果。 考慮以下非線式最優化問題: f(x)是需要最小化的函數,g_i (x)\ (i.

新!!: 拉格朗日乘数和卡羅需-庫恩-塔克條件 · 查看更多 »

变分法

变分法是处理泛函的数学领域,和处理函数的普通微积分相对。譬如,这样的泛函可以通过未知函数的积分和它的导数来构造。变分法最终寻求的是极值函数:它们使得泛函取得极大或极小值。有些曲线上的经典问题采用这种形式表达:一个例子是最速降线,在重力作用下一个粒子沿着该路径可以在最短时间从点A到达不直接在它底下的一点B。在所有从A到B的曲线中必须极小化代表下降时间的表达式。 变分法的关键定理是欧拉-拉格朗日方程。它对应于泛函的临界点。在寻找函数的极大和极小值时,在一个解附近的微小变化的分析给出一阶的一个近似。它不能分辨是找到了最大值或者最小值(或者都不是)。 变分法在理论物理中非常重要:在拉格朗日力学中,以及在最小作用量原理在量子力学的应用中。变分法提供了有限元方法的数学基础,它是求解边界值问题的强力工具。它们也在材料学中研究材料平衡中大量使用。而在纯数学中的例子有,黎曼在调和函数中使用狄利克雷原理。 同样的材料可以出现在不同的标题中,例如希尔伯特空间技术,莫尔斯理论,或者辛几何。变分一词用于所有极值泛函问题。微分几何中的测地线的研究是很显然的变分性质的领域。极小曲面(肥皂泡)上也有很多研究工作,称为普拉托问题。.

新!!: 拉格朗日乘数和变分法 · 查看更多 »

向量

向量(vector,物理、工程等也称作--)是数学、物理学和工程科学等多个自然科學中的基本概念,指一个同时具有大小和方向,且满足平行四边形法则的几何對象。一般地,同时满足具有大小和方向两个性质的几何对象即可认为是向量(特别地,电流属既有大小、又有正负方向的量,但由于其运算不满足平行四边形法则,公认为其不属于向量)。向量常常在以符号加箭头标示以区别于其它量。与向量相对的概念称标量或数量,即只有大小、绝大多数情况下没有方向(电流是特例)、不满足平行四边形法则的量。.

新!!: 拉格朗日乘数和向量 · 查看更多 »

影子价格

影子價格,又稱陰影價格。简单来说,影子价格就是,在最適化问题当中,当限制条件放寬一个单位之后,最適解决方案的真实价值的变化。在商业活动当中,影子价格是管理层愿意为获取额外一个单位的既定资源,而多付出的最大价格。例如,当一条生产线已经运行了40个小时(其最长工作时间),那么让这条生产线再多工作一个小时,其价格是多少呢?这个价格就是影子价格。 正式来说,影子价格是拉格朗日乘数在最优化时的值。意思是在限制条件无限微分的情况下,所导致的方程的无限微分。拉格朗日乘数是一种新的标量未知数,即:约束方程的斜率的线性组合里每个向量的系数。每一个最优化限制条件都有一个影子价格或者是二元变量。 比如,工人每周最多工作40个小时,影子价格能够告知我们,雇主愿意为工人多干一个小时所付出的薪水。在人工限制条件下,当影子价格确定为10元每小时,雇主愿意最多付10元每小时,当人工成本小于10元每小时,真实价值就增加,反之真实价值就减少。.

新!!: 拉格朗日乘数和影子价格 · 查看更多 »

作用量

在物理學裏,作用量(英语:action)是一個很特別、很抽象的物理量。它表示著一個動力物理系統內在的演化趨向。雖然與微分方程式方法大不相同,作用量也可以被用來分析物理系統的運動,所得到的答案是相同的。只需要設定系統在兩個點的狀態,初始狀態與最終狀態,然後,經過求解作用量的平穩值,就可以得到系統在兩個點之間每個點的狀態。.

新!!: 拉格朗日乘数和作用量 · 查看更多 »

哈密頓原理

在物理學裏,哈密頓原理(Hamilton's principle)是愛爾蘭物理學家威廉·哈密頓於1833年發表的關於平穩作用量原理的表述。哈密頓原理闡明,一個物理系統的拉格朗日函數,所構成的泛函的變分問題解答,可以表達這物理系統的動力行為。拉格朗日函數又稱為拉格朗日量,包含了這物理系統所有的物理內涵。這泛函稱為作用量。哈密頓原理提供了一種新的方法來表述物理系統的運動。不同於牛頓運動定律的微分方程式方法,這方法以積分方程式來設定系統的作用量,在作用量平穩的要求下,使用變分法來計算整個系統的運動方程式。 雖然哈密頓原理本來是用來表述經典力學,這原理也可以應用於經典場,像電磁場或重力場,甚至可以延伸至量子場論等等。.

新!!: 拉格朗日乘数和哈密頓原理 · 查看更多 »

函数

函數在數學中為兩集合間的一種對應關係:輸入值集合中的每項元素皆能對應唯一一項輸出值集合中的元素。例如實數x對應到其平方x2的關係就是一個函數,若以3作為此函數的輸入值,所得的輸出值便是9。 為方便起見,一般做法是以符號f,g,h等等來指代一個函數。若函數f以x作為輸入值,則其輸出值一般寫作f(x),讀作f of x。上述的平方函數關係寫成數學式記為f(x).

新!!: 拉格朗日乘数和函数 · 查看更多 »

全微分

全微分(total derivative)是微积分学的一个概念,指多元函数的全增量\Delta z的线性主部,记为\operatorname dz。例如,对于二元函数z.

新!!: 拉格朗日乘数和全微分 · 查看更多 »

约瑟夫·拉格朗日

约瑟夫·拉格朗日伯爵(Joseph Lagrange,),法国籍意大利裔数学家和天文学家。拉格朗日曾为普鲁士的腓特烈大帝在柏林工作了20年,被腓特烈大帝称做「欧洲最伟大的数学家」,后受法国国王路易十六的邀请定居巴黎直至去世。拉格朗日一生才华横溢,在数学、物理和天文等领域做出了很多重大的贡献。他的成就包括著名的拉格朗日中值定理,创立了拉格朗日力学等等。 拉格朗日是18世纪一位十分重要的科学家,在数学、力学和天文学三个学科中都有历史性的重大贡献,但他主要是数学家。他最突出的贡献是在把数学分析的基础脱离几何与力学方面起了决定性的作用,使数学的独立性更为清楚,而不仅是其他学科的工具。同时在使天文学力学化、力学分析化上也起了历史性作用,促使力学和天文学(天体力学)更深入发展。在他的时代,分析学等分支刚刚起步,欠缺严密性和标准形式,但这不足以妨碍他取得大量的成果。.

新!!: 拉格朗日乘数和约瑟夫·拉格朗日 · 查看更多 »

线性组合

線性組合(Linear combination)是線性代數中具有如下形式的表达式。其中v_i为任意类型的项,a_i为标量。這些純量稱為線性組合的係數或權。.

新!!: 拉格朗日乘数和线性组合 · 查看更多 »

经济学

經濟學是一門对产品和服务的生产、分配以及消费进行研究的社會科學。西方语言中的“经济学”一词源於古希臘的Marshall, Alfred, and Mary Paley Marshall (1879).

新!!: 拉格朗日乘数和经济学 · 查看更多 »

熵 (信息论)

在信息论中,熵(entropy)是接收的每条消息中包含的信息的平均量,又被稱為信息熵、信源熵、平均自信息量。这里,“消息”代表来自分布或数据流中的事件、样本或特征。(熵最好理解为不确定性的量度而不是确定性的量度,因为越随机的信源的熵越大。)来自信源的另一个特征是样本的概率分布。这里的想法是,比较不可能发生的事情,当它发生了,会提供更多的信息。由于一些其他的原因,把信息(熵)定义为概率分布的对数的相反数是有道理的。事件的概率分布和每个事件的信息量构成了一个随机变量,这个随机变量的均值(即期望)就是这个分布产生的信息量的平均值(即熵)。熵的单位通常为比特,但也用Sh、nat、Hart计量,取决于定义用到对数的底。 采用概率分布的对数作为信息的量度的原因是其可加性。例如,投掷一次硬币提供了1 Sh的信息,而掷m次就为m位。更一般地,你需要用log2(n)位来表示一个可以取n个值的变量。 在1948年,克劳德·艾尔伍德·香农將熱力學的熵,引入到信息论,因此它又被稱為香农熵。.

新!!: 拉格朗日乘数和熵 (信息论) · 查看更多 »

鞍點

一個不是局部極值點的駐點稱為鞍點。 廣義而說,一個光滑函數(曲線,曲面,或超曲面)的鞍點鄰域的曲線,曲面,或超曲面,都位於這點的切線的不同邊。 參考右圖,鞍點這詞語來自於不定二次型x^2 - y^2\,的二維圖形,像個馬鞍:在x-軸--往上曲,在y-軸--往下曲。 检验二元实函数F(x,y)的驻点是不是鞍点的一个简单的方法,是计算函数在这个点的海森矩阵:如果該矩陣為一不定矩陣,则该点就是鞍点。例如,函数z.

新!!: 拉格朗日乘数和鞍點 · 查看更多 »

變數

在初等數學裡,變數或變元、元是一個用來表示值的符號,該值可以是隨意的,也可能是未指定或未定的。在代數運算時,將變數當作明確的數值代入運算中,可以於單次運算時解出多個問題。一個典型的例子為一元二次公式,該公式可以解出每個一元二次方程的值,只需要將方程的系數代入公式中的變數即可。 變數這個概念在微積分中非常重要。一般,一個函數y.

新!!: 拉格朗日乘数和變數 · 查看更多 »

边际效用

在微观经济学中,边际效用(marginal utility),又译为边际效应,是指每新增(或减少)一个单位的商品或服务,它对商品或服务的收益增加(或减少)的效用,也即是「效用──商品或服务量」图的斜率。经济学通常认为,随着商品或服务的量增加,边际效用将会逐步减少,称为边际效应递减定律。 在这里要注意的是,边际效用是指某种物品的消费量每增加一单位所增加的满足程度,针对的是消费者;而边际报酬(marginal returns)则对应生产者。同样,随着商品或服务的量增加,边际报酬也将会逐步减少,称为边际报酬递减定律。.

新!!: 拉格朗日乘数和边际效用 · 查看更多 »

链式法则

链式法则或鏈鎖定則(英语:chain rule),是求复合函数导数的一个法则。设f 和g 为两个关于x 可导函数,则复合函数 (f \circ g)(x)的导数 (f \circ g)'(x)为:.

新!!: 拉格朗日乘数和链式法则 · 查看更多 »

自变量

#重定向 自变量和因变量.

新!!: 拉格朗日乘数和自变量 · 查看更多 »

极值

在数学中,极大值与极小值(又被称为极值)是指在一个域上函数取得最大值(或最小值)的点的函数值。而使函数取得极值的点(的横坐标)被称作极值点。这个域既可以是一个邻域,又可以是整个函数域(这时极值称为最值)。.

新!!: 拉格朗日乘数和极值 · 查看更多 »

梯度

在向量微积分中,标量场的梯度是一个向量场。标量场中某一点的梯度指向在這點标量场增长最快的方向(當然要比較的話必須固定方向的長度),梯度的絕對值是長度為1的方向中函數最大的增加率,也就是說 |\nabla f|.

新!!: 拉格朗日乘数和梯度 · 查看更多 »

概率分布

概率分布(Wahrscheinlichkeitsverteilung,probability distribution)或簡稱分布,是概率論的一個概念。使用時可以有以下兩種含義:.

新!!: 拉格朗日乘数和概率分布 · 查看更多 »

消费者

消费者指任何使用经济里产生的商品和服务的个人或组织。 在经济体系中,消费者是在决定交易与否中表现的效用。.

新!!: 拉格朗日乘数和消费者 · 查看更多 »

最优化

最优化,是应用数学的一个分支,主要研究以下形式的问题:.

新!!: 拉格朗日乘数和最优化 · 查看更多 »

方程

数学中方程可以简单的理解为含有未知数的等式。例如以下的方程: 其中的x為未知數。 如果把数学当作语言,那么方程可以为人们提供一些用来描述他们所感兴趣的对象的语法,它可以把未知的元素包含到陈述句当中(比如用“相等”这个词来构成的陈述句),因此如果人们对某些未知的元素感兴趣,但是用数学语言去精确地表达那些确定未知元素的条件时需要用到未知元素本身,这时人们就常常用方程来描述那些条件,并且形成这样一个问题:能使这些条件满足的元素是什么?在某个集合内,能使方程中所描述的条件被满足的元素称为方程在这个集合中的解(比如代入某个數到含未知数的等式,使等式中等号左右两边相等)。 求出方程的解或说明方程无解这一过程叫做解方程。可以用方程的解的存在状况为方程分类,例如,恒等式即恒成立的方程,例如(y + 2)^2.

新!!: 拉格朗日乘数和方程 · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

新!!: 拉格朗日乘数和数学 · 查看更多 »

效用

效用(Utility),是微观经济学中最常用的概念之一。一般而言,效用是指对于消费者通过消费或者享受闲暇等使自己的需求、欲望等得到的满足的一个度量。.

新!!: 拉格朗日乘数和效用 · 查看更多 »

拉格朗日力学

拉格朗日力学(Lagrangian mechanics)是分析力学中的一种,于1788年由約瑟夫·拉格朗日所创立。拉格朗日力学是对经典力学的一种的新的理论表述,着重于数学解析的方法,並運用最小作用量原理,是分析力学的重要组成部分。 经典力学最初的表述形式由牛顿建立,它着重於分析位移,速度,加速度,力等矢量间的关系,又称为矢量力学。拉格朗日引入了广义坐标的概念,又运用达朗贝尔原理,求得与牛顿第二定律等价的拉格朗日方程。不仅如此,拉格朗日方程具有更普遍的意义,适用范围更广泛。还有,选取恰当的广义坐标,可以大大地简化拉格朗日方程的求解过程。.

新!!: 拉格朗日乘数和拉格朗日力学 · 查看更多 »

拉格朗日方程式

拉格朗日方程式(Lagrange equation),因數學物理學家约瑟夫·拉格朗日而命名,是分析力學的重要方程式,可以用來描述物體的運動,特別適用於理論物理的研究。拉格朗日方程式的功能相等於牛頓力學中的牛頓第二定律。.

新!!: 拉格朗日乘数和拉格朗日方程式 · 查看更多 »

重定向到这里:

拉格朗日乘子拉格朗日乘子法拉格朗日乘數法拉氏乘子

传出传入
嘿!我们在Facebook上吧! »