我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

希爾伯特第十問題

指数 希爾伯特第十問題

希爾伯特的第十個問題,就是不定方程(又稱為丟番圖方程)的可解答性。這是希爾伯特於1900年在巴黎的國際數學家大會演說中,所提出的23個重要數學問題的第十題。 這個問題是問,對於任意多個未知數的整係數不定方程,要求給出一個可行的方法(verfahren),使得借助於它,通過有限次運算,可以判定該方程有無整數解。 這裡德文的方法(verfahren),就是英文所謂的演算法(algorithm)。對於演算法的概念我們是不陌生的,例如遠在古希臘時代,人們就知道可以使用輾轉相除法,求兩個自然數的最大公約數。還有,任給一個自然數,也存在著一個方法,在有限步驟內,可以判定這個數是不是質數。 雖然人們很早就有了演算法的樸素概念,但對於到底什麼是可行的計算,仍沒有精確的概念。一個問題的可解與不可解究竟是什麼含意,當時的人們還不得而知。然而為了研究第十問題,必須給予演算法精確化的觀念。這點還有賴於數理邏輯學對可計算性理論的發展,才得以實現。.

目录

  1. 26 关系: 古希腊大卫·希尔伯特尤里·马季亚谢维奇巴黎丟番圖集丟番圖方程希拉里·怀特哈尔·普特南二項式係數德语勾股定理国际数学家大会算法素数階乘补集變數费马大定理輾轉相除法自然数英语递归可枚举集合递归函数递归论斐波那契数列数理逻辑整数

  2. 丟番圖方程
  3. 希尔伯特问题

古希腊

位于雅典卫城的帕特农神庙,是给女神雅典娜而建。它是古希腊文明最具代表性的标志性符号之一。 古希腊是指从希腊历史上公元前8世纪的古风时期开始到公元前146年被罗马共和国征服之前的这段时间的希腊文明。 早在古希臘文明興起之前約800年,愛琴海地區就孕育了燦爛的克里特文明和邁錫尼文明。大約在公元前1200年,多利亞人的入侵毀滅了邁錫尼文明,希臘歷史進入所謂「黑暗時代」。 在雅典的领导下,在兩次的波希战争取胜之后,并在前5世纪到前4世纪之间,也就是在波希戰爭結束後至伯羅奔尼撒戰爭爆發前的這段時期达到鼎盛,被称作“黄金时期”。在被馬其頓國王亚历山大大帝征服后,希腊化文明在地中海西岸到中亚的大片地区扩散。 古希腊人在宗教、哲學、科學、藝術、工藝等诸多方面有很深的造诣。由于古希腊文明对罗马帝国有过重大影响,后者将前者的文明吸收并带到环地中海和欧洲的许多地区。因此一般认为古希腊文明为西方文明打下了基础。.

查看 希爾伯特第十問題和古希腊

大卫·希尔伯特

大卫·希尔伯特(David Hilbert,),德国数学家,是19世纪和20世纪初最具影响力的数学家之一。希尔伯特1862年出生于哥尼斯堡(今俄罗斯加里宁格勒),1943年在德国哥廷根逝世。他因为发明了大量的思想观念(例:不变量理论、、希尔伯特空间)而被尊为伟大的数学家、科学家。 他提出了希尔伯特空间的理論,是泛函分析的基礎之一。他热忱地支持康托的集合论与无限数。他在数学上的领导地位充分体现于:1900年,在巴黎的国际数学家大会提出的一系列问题(希尔伯特的23个问题)为20世纪的许多数学研究指出方向。 希尔伯特和他的学生为形成量子力学和广义相对论的数学基础做出了重要的贡献。他还是证明论、数理逻辑、区分数学与元数学之差别的奠基人之一。.

查看 希爾伯特第十問題和大卫·希尔伯特

尤里·马季亚谢维奇

尤里·弗拉基米罗维奇·马季亚谢维奇(Юрий Владимирович Матиясевич,),俄罗斯数学家,生於列宁格勒。1964年他在莫斯科举办的第6届国际数学奥林匹克赢了第一。1969年他在列宁格勒国立大学数学和力学系毕业。 他的最有名成果是在博士论文中对希尔伯特第十问题给了否定答案,于斯捷克洛夫数学研究所列宁格勒分所发表。 1997年他获选为俄罗斯科学院院士。他现在俄罗斯科学院斯捷克洛夫数学研究所圣彼得堡分所(即以前的斯捷克洛夫数学研究所列宁格勒分所)领导数理逻辑实验室。.

查看 希爾伯特第十問題和尤里·马季亚谢维奇

巴黎

巴黎(Paris)是法國的首都及最大都市,同時是法蘭西島大區首府,為法國的政治與文化中心,隸屬法蘭西島大區之下的巴黎省(編號第75省;僅轄有1個同名市鎮)。目前的巴黎市轄區範圍大致為舊巴黎城牆內(環城大道內側),依照發展歷史共分成20個區,自從1860年代開始就沒有重大變化。截至2011年為止,巴黎市内人口超過225萬,的人口則逾1,229萬,是歐洲最大的都會區之一。 巴黎在近1,000年的時間内是西方最大的城市,也曾經是世界上最大的城市(16世紀至19世紀期间)。目前是世界上最重要的政治和文化中心之一,在教育、娛樂、時尚、科學、媒體、藝術、金融、政治等方面皆有重大影響力,被認為是世界上最重要的国际大都会之一.

查看 希爾伯特第十問題和巴黎

丟番圖集

若有一些整係數多項式f(n_1,..., n_j, x_1,..., x_k),存在整數x_1,...,x_k使得f(n_1,..., nj, x_1,..., x_k).

查看 希爾伯特第十問題和丟番圖集

丟番圖方程

丟番圖方程,是未知数只能使用整數的整數係數多項式等式;即形式如a_1 x_1^+a_2 x_2^+......+a_n x_n^.

查看 希爾伯特第十問題和丟番圖方程

希拉里·怀特哈尔·普特南

希拉里·怀特哈尔·普特南(Hilary Whitehall Putnam,),美国哲学家、數學家與計算機科學家,20世纪60年代分析哲学的重要人物,特别在心灵哲学、语言哲学、数学哲学和科学哲学等领域。.

查看 希爾伯特第十問題和希拉里·怀特哈尔·普特南

二項式係數

二項式係數在數學上是二項式定理中的係數族。其必然為正整數,且能以兩個非負整數為參數確定,此兩參數通常以n和k代表,並將二項式係數寫作\tbinom nk ,亦即是二項式冪(1 + x) n的多項式展式中,x k項的係數。如將二項式係數的n值順序排列成行,每行為k值由0至n列出,則構成帕斯卡三角形。 此數族亦常見於其他代數學領域中,尤其是組合數學。任何有n個元素的集合,由其衍生出擁有k個元素的子集,即由其中任意k個元素的組合,共有\tbinom nk個。故此\tbinom nk亦常讀作「n選取k」。二項式係數的特性使表達式\tbinom nk的定義不再局限於n和k均為非負整數及,然此等表達式仍被稱為二項式係數。 雖然此數族早已被發現(見帕斯卡三角形),但表達式\tbinom nk則是由安德烈亚斯·冯·厄廷格豪森於1826年始用。最早探討二項式係數的論述是十世紀的Halayudha寫的印度教典籍《Pingala的計量聖典》(chandaḥśāstra),及至約1150年,印度數學家Bhaskaracharya於其著作《Lilavati》Lilavati 第6節,第4章(見)。 中給出一個簡單的描述。 二項式係數亦有不同的符號表達方式,包括:C(n, k)、nCk、nCk、C^_,其中的C代表組合(combinations)或選擇(choices)。.

查看 希爾伯特第十問題和二項式係數

德语

德语(德语:Deutsch,)是印欧语系西日耳曼語支的一门语言。以使用國家數量來算是世界排名第六的語言,也是世界大國語言之一以及欧盟内使用最广的母语,德语拥有9000万到9800万使用者。德语标准共同语的形成可以追溯到马丁·路德对拉丁文《圣经》的翻译工作。大多数德语词汇源于印欧语系日耳曼语族的语言,一些词汇来自拉丁语和希腊语,还有部分来自法语和英语。 德语母语使用者的主要分布在德国、奥地利、瑞士北部、列支敦士登和卢森堡。欧洲许多地区(如意大利北部、比利时东部以及波兰等地)和作为原德国殖民地的纳米比亚也有大量的德语使用者,主要为作为当地少数民族的日耳曼人。 德语书写使用拉丁字母。德文字母除去标准的26个拉丁字母外,另有三个带分音符的元音Ä/ä、Ö/ö、Ü/ü以及一个特殊字母ß。.

查看 希爾伯特第十問題和德语

勾股定理

氏定理(Pythagorean theorem)(希腊语:Πυθαγόρειο θεώρημα)又称商高定理、畢達哥拉斯定理、--、百牛定理,是平面几何中一个基本而重要的定理。勾股定理说明,平面上的直角三角形的两条直角边的长度(古称勾长、股长)的平方和等于斜边长(古称弦长)的平方。反之,若平面上三角形中两边长的平方和等于第三边边长的平方,则它是直角三角形(直角所对的边是第三边)。 勾股定理是人类早期发现并证明的重要数学定理之一。 据《周髀算經》中记述,公元前一千多年周公与商高论数的对话中,商高就以三四五3个特定数为例详细解释了勾股定理要素,其一,“以为句广三,股修四,径隅五”。其二,“既方其外,半之一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。”首先肯定一个底宽为三,高为四的直角三角形,弦长必定是五。最重要的是紧接着论证了弦长平方必定是两直角边的平方和,确立了直角三角形两条直角边的平方和等于斜边平方的判定原则。其判定方法后世不明其法而被忽略。 此外,《周髀算经》中明确记载了周公后人陈子叙述的勾股定理公式:“若求邪至日者,以日下为勾,日高为股,勾股各自乘,并而开方除之,得邪至日”。 赵爽在《周髀算經注》中将勾股定理表述为“勾股各自乘,并之,为弦实。开方除之,即弦”。 古埃及在公元前2600年的纸莎草就有(3,4,5)这一组勾股数,而古巴比伦泥板涉及的最大的一个勾股数组是(12709,13500,18541)。 有些參考資料提到法国和比利時將勾股定理称为驴桥定理,但驴桥定理就是等邊對等角,是指等腰三角形的二底角相等,非勾股定理。.

查看 希爾伯特第十問題和勾股定理

国际数学家大会

国际数学家大会(International Congress of Mathematicians,简称ICM)是由国际数学联盟(IMU)主办的全球性数学学术会议。会议的主要内容是进行学术交流,并在开幕式上颁发菲尔兹奖(1936年起)、奈望林纳奖(1982年起)、高斯奖(2006年起)和陈省身奖章(2010年起)。 首届国际数学家大会1897年在瑞士蘇黎世举行,1900年巴黎大会之后每四年举行一次。除两次世界大战的影响外,国际数学家大会从未中断。2014年大會於8月13日至21日在韓國首爾舉行,2018年大會將在巴西里約熱內盧舉行。.

查看 希爾伯特第十問題和国际数学家大会

算法

-- 算法(algorithm),在數學(算學)和電腦科學之中,為任何良定义的具體計算步驟的一个序列,常用於計算、和自動推理。精確而言,算法是一個表示爲有限長列表的。算法應包含清晰定義的指令用於計算函數。 算法中的指令描述的是一個計算,當其時能從一個初始狀態和初始輸入(可能爲空)開始,經過一系列有限而清晰定義的狀態最終產生輸出並停止於一個終態。一個狀態到另一個狀態的轉移不一定是確定的。隨機化算法在内的一些算法,包含了一些隨機輸入。 形式化算法的概念部分源自尝试解决希尔伯特提出的判定问题,並在其后尝试定义或者中成形。这些尝试包括库尔特·哥德尔、雅克·埃尔布朗和斯蒂芬·科尔·克莱尼分别于1930年、1934年和1935年提出的遞歸函數,阿隆佐·邱奇於1936年提出的λ演算,1936年的Formulation 1和艾倫·圖靈1937年提出的圖靈機。即使在當前,依然常有直覺想法難以定義爲形式化算法的情況。.

查看 希爾伯特第十問題和算法

素数

質--數(Prime number),又称素--数,指在大於1的自然数中,除了1和該数自身外,無法被其他自然数整除的数(也可定義為只有1與該數本身两个正因数的数)。大於1的自然數若不是質數,則稱之為合數。例如,5是個質數,因為其正因數只有1與5。而6則是個合數,因為除了1與6外,2與3也是其正因數。算術基本定理確立了質數於數論裡的核心地位:任何大於1的整數均可被表示成一串唯一質數之乘積。為了確保該定理的唯一性,1被定義為不是質數,因為在因式分解中可以有任意多個1(如3、1×3、1×1×3等都是3的有效因數分解)。 古希臘數學家歐幾里得於公元前300年前後證明有無限多個質數存在(欧几里得定理)。現時人們已發現多種驗證質數的方法。其中試除法比較簡單,但需時較長:設被測試的自然數為n,使用此方法者需逐一測試2與\sqrt之間的整數,確保它們無一能整除n。對於較大或一些具特別形式(如梅森數)的自然數,人們通常使用較有效率的演算法測試其是否為質數(例如277232917-1是直至2017年底為止已知最大的梅森質數)。雖然人們仍未發現可以完全區別質數與合數的公式,但已建構了質數的分佈模式(亦即質數在大數時的統計模式)。19世紀晚期得到證明的質數定理指出:一個任意自然數n為質數的機率反比於其數位(或n的對數)。 許多有關質數的問題依然未解,如哥德巴赫猜想(每個大於2的偶數可表示成兩個素數之和)及孿生質數猜想(存在無窮多對相差2的質數)。這些問題促進了數論各個分支的發展,主要在於數字的解析或代數方面。質數被用於資訊科技裡的幾個程序中,如公鑰加密利用了難以將大數分解成其質因數之類的性質。質數亦在其他數學領域裡形成了各種廣義化的質數概念,主要出現在代數裡,如質元素及質理想。.

查看 希爾伯特第十問題和素数

階乘

一个正整数的階乘(factorial)是所有小於及等於該數的正整數的積,并且有0的阶乘为1。自然數n的階乘寫作n!。1808年,基斯頓·卡曼引進這個表示法。 亦即n!.

查看 希爾伯特第十問題和階乘

补集

在集合论和数学的其他分支中,存在--的两种定义:--和--。.

查看 希爾伯特第十問題和补集

變數

在初等數學裡,變數或變元、元是一個用來表示值的符號,該值可以是隨意的,也可能是未指定或未定的。在代數運算時,將變數當作明確的數值代入運算中,可以於單次運算時解出多個問題。一個典型的例子為一元二次公式,該公式可以解出每個一元二次方程的值,只需要將方程的系數代入公式中的變數即可。 變數這個概念在微積分中非常重要。一般,一個函數y.

查看 希爾伯特第十問題和變數

费马大定理

费马大定理,也称費馬最後定理(Le dernier théorème de Fermat);(Fermat's Last Theorem),其概要為: 以上陳述由17世纪法国数学家费马提出,一直被稱為「费马猜想」,直到英國數學家安德魯·懷爾斯(Andrew John Wiles)及其學生理查·泰勒(Richard Taylor)於1995年將他們的證明出版後,才稱為「費馬大定理」。這個猜想最初出現費馬的《頁邊筆記》中。儘管費馬表明他已找到一個精妙的證明而頁邊没有足夠的空位寫下,但仍然經過數學家們三個多世紀的努力,猜想才變成了定理。在衝擊這個数论世紀难题的過程中,無論是不完全的還是最後完整的證明,都給數學界帶來很大的影響;很多的數學結果、甚至數學分支在這個過程中誕生了,包括代數幾何中的橢圓曲線和模形式,以及伽羅瓦理論和赫克代數等。這也令人懷疑當初費馬是否真的找到了正確證明。而安德魯·懷爾斯由於成功證明此定理,獲得了包括邵逸夫獎在内的数十个奖项。.

查看 希爾伯特第十問題和费马大定理

輾轉相除法

在数学中,辗转相除法,又称欧几里得算法(Euclidean algorithm),是求最大公约数的算法。辗转相除法首次出现于欧几里得的《几何原本》(第VII卷,命题i和ii)中,而在中国则可以追溯至东汉出现的《九章算术》。 两个整数的最大公约数是能够同时整除它们的最大的正整数。辗转相除法基于如下原理:两个整数的最大公约数等于其中较小的数和两数的差的最大公约数。例如,252和105的最大公约数是21();因为,所以147和105的最大公约数也是21。在这个过程中,较大的数缩小了,所以继续进行同样的计算可以不断缩小这两个数直至其中一个变成零。这时,所剩下的还没有变成零的数就是两数的最大公约数。由辗转相除法也可以推出,两数的最大公约数可以用两数的整数倍相加来表示,如。这个重要的結論叫做貝祖定理。 辗转相除法最早出现在欧几里得的《几何原本》中(大约公元前300年),所以它是现行的算法中歷史最悠久的。这个算法原先只用来处理自然数和几何长度(相當於正實數),但在19世纪,辗转相除法被推广至其他类型的數學對象,如高斯整数和一元多项式。由此,引申出欧几里得整环等等的一些现代抽象代数概念。后来,辗转相除法又扩展至其他数学领域,如纽结理论和多元多项式。 辗转相除法有很多应用,它甚至可以用来生成全世界不同文化中的传统音乐节奏。在现代密码学方面,它是RSA算法(一种在电子商务中广泛使用的公钥加密算法)的重要部分。它还被用来解丢番图方程,比如寻找满足中国剩余定理的数,或者求有限域中元素的逆。辗转相除法还可以用来构造连分数,在施图姆定理和一些整数分解算法中也有应用。辗转相除法是现代数论中的基本工具。 辗转相除法处理大数时非常高效,如果用除法而不是减法实现,它需要的步骤不会超过较小数的位数(十进制下)的五倍。拉梅于1844年证明了这点,同時這也標誌著计算复杂性理论的開端。.

查看 希爾伯特第十問題和輾轉相除法

自然数

数学中,自然数指用于计数(如「桌子上有三个苹果」)和定序(如「国内第三大城市」)的数字。用于计数时称之为基数,用于定序时称之为序数。 自然数的定义不一,可以指正整数 (1, 2, 3, 4, \ldots),亦可以指非负整数 (0, 1, 2, 3, 4, \ldots)。前者多在数论中使用,后者多在集合论和计算机科学中使用,也是 标准中所采用的定义。 数学家一般以\mathbb代表以自然数组成的集合。自然数集是一個可數的,無上界的無窮集合。.

查看 希爾伯特第十問題和自然数

英语

英语(English,)是一种西日耳曼语言,诞生于中世纪早期的英格兰,如今具有全球通用语的地位。“英语”一词源于迁居英格兰的日耳曼部落盎格鲁(Angles),而“盎格鲁”得名于临波罗的海的半岛盎格里亚(Anglia)。弗里西语是与英语最相近的语言。英语词汇在中世纪早期受到了其他日耳曼族语言的大量影响,后来受罗曼族语言尤其是法语的影响。英语是将近六十个国家唯一的官方语言或官方语言之一,也是全世界最多國家的官方語言。它是英国、美国、加拿大、澳大利亚、爱尔兰和新西兰最常用的语言,也在加勒比、非洲及南亚的部分地区被广泛使用。它是世界上母语人口第三多的语言,仅次于汉语和西班牙语。英语是学习者最多的第二外语跟學習者最多的第一外語,是联合国、欧盟和许多其他国际组织的官方语言。它是使用最广泛的日耳曼族语言,至少70%的日耳曼语族使用者说英语。 英语有1400多年的发展史。公元5世纪,盎格魯-撒克遜人把他们的各种盎格鲁-弗里西语方言带到了大不列顛島,它们被称为古英语。中古英语始于11世纪后期的诺曼征服,这一时期英语受到了法语的影响。15世纪末伦敦对印刷机的采用、《钦定版圣经》的出版及元音大推移标志了近代英语的开端。通过大英帝国对全球的影响,现代英语在17世纪至20世纪中叶传播到了世界各地。通过各种印刷和电子媒体,随着美国取得全球超级大国地位,英语已经成为了国际对话中居领导地位的世界語言。它还是许多地区和行业(如科学、导航、法律等)的通用语。 现代英语和很多其他语言相比屈折变化较少,更多地依靠助動詞和语序来表达复杂的时态、体和语气,以及被動語態、疑问和一些否定。英语的各种口音和方言在发音和音位方面有显著差异,有时它们的词汇、语法和拼法也有所不同,但世界各地说英语的人能基本无碍地沟通交流。.

查看 希爾伯特第十問題和英语

递归可枚举集合

递归可枚举集合(Recursively enumerable set)是可计算性理论或更狭义的递归论中的一个概念。可数集合S被称为是递归可枚举、计算可枚举的、半可判定的或可证明的,如果.

查看 希爾伯特第十問題和递归可枚举集合

递归函数

在数理逻辑和计算机科学中,递归函数或μ-递归函数是一类从自然数到自然数的函数。直觉上递归函数是"可计算的"。事实上在可计算性理论中已经证明了它确实是图灵机的可计算函数。递归函数与原始递归函数相关,而且递归函数的归纳定义(见下)建立在原始递归函数之上。但不是所有递归函数都是原始递归函数——其中最著名的是阿克曼函数。 其他等价的函数类是λ-递归函数和马尔可夫算法可计算的函数。 所有递归函数的集合叫做R。.

查看 希爾伯特第十問題和递归函数

递归论

递归论或可计算性理论,是一个数理逻辑分支。它起源于可计算函数和图灵度的研究。它的领域增长为包括一般性的可计算性和可定义性的研究。在这些领域中,这门理论同证明论和能行描述集合论(effective descriptive set theory)有所重叠。 数理逻辑中的可计算性理论家经常研究相对可计算性、可归约性概念和程度结构的理论。相对于计算机科学家,他们研究次递归层次,可行的计算和公用于可计算性理论研究的形式语言。在这两个社区之间有着相当大的知识和方法上的重叠,而没有明显的界限。.

查看 希爾伯特第十問題和递归论

斐波那契数列

--(意大利语:Successione di Fibonacci),又譯為費波拿契數列、費波那西數列、費氏數列、黃金分割數列。 在數學上,費波那契數列是以遞歸的方法來定義:.

查看 希爾伯特第十問題和斐波那契数列

数理逻辑

数理逻辑是数学的一个分支,其研究对象是对证明和计算这两个直观概念进行符号化以后的形式系统。数理逻辑是数学基础的一个不可缺少的组成部分。 数理逻辑的研究范围是逻辑中可被数学模式化的部分。以前称为符号逻辑(相对于哲学逻辑),又称元数学,后者的使用现已局限于证明论的某些方面。.

查看 希爾伯特第十問題和数理逻辑

整数

整数,是序列中所有的数的统称,包括负整数、零(0)与正整数。和自然數一樣,整數也是一個可數的無限集合。這個集合在数学上通常表示粗體Z或\mathbb,源于德语单词Zahlen(意为“数”)的首字母。 在代數數論中,這些屬於有理數的一般整數會被稱為有理整數,用以和高斯整數等的概念加以區分。.

查看 希爾伯特第十問題和整数

另见

丟番圖方程

希尔伯特问题