我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

丟番圖集

指数 丟番圖集

若有一些整係數多項式f(n_1,..., n_j, x_1,..., x_k),存在整數x_1,...,x_k使得f(n_1,..., nj, x_1,..., x_k).

目录

  1. 6 关系: 多項式丟番圖方程希爾伯特第十問題四平方和定理递归可枚举集合斐波那契数列

  2. 丟番圖方程
  3. 希尔伯特问题

多項式

多项式(Polynomial)是代数学中的基础概念,是由称为未知数的变量和称为系数的常数通过有限次加减法、乘法以及自然数幂次的乘方运算得到的代数表达式。多项式是整式的一种。未知数只有一个的多项式称为一元多项式;例如x^2-3x+4就是一个一元多项式。未知数不止一个的多项式称为多元多项式,例如就是一個三元多项式。 可以写成只由一项构成的多项式也称为单项式。如果一项中不含未知数,则称之为常数项。 多项式在数学的很多分支中乃至许多自然科学以及工程学中都有重要作用。.

查看 丟番圖集和多項式

丟番圖方程

丟番圖方程,是未知数只能使用整數的整數係數多項式等式;即形式如a_1 x_1^+a_2 x_2^+......+a_n x_n^.

查看 丟番圖集和丟番圖方程

希爾伯特第十問題

希爾伯特的第十個問題,就是不定方程(又稱為丟番圖方程)的可解答性。這是希爾伯特於1900年在巴黎的國際數學家大會演說中,所提出的23個重要數學問題的第十題。 這個問題是問,對於任意多個未知數的整係數不定方程,要求給出一個可行的方法(verfahren),使得借助於它,通過有限次運算,可以判定該方程有無整數解。 這裡德文的方法(verfahren),就是英文所謂的演算法(algorithm)。對於演算法的概念我們是不陌生的,例如遠在古希臘時代,人們就知道可以使用輾轉相除法,求兩個自然數的最大公約數。還有,任給一個自然數,也存在著一個方法,在有限步驟內,可以判定這個數是不是質數。 雖然人們很早就有了演算法的樸素概念,但對於到底什麼是可行的計算,仍沒有精確的概念。一個問題的可解與不可解究竟是什麼含意,當時的人們還不得而知。然而為了研究第十問題,必須給予演算法精確化的觀念。這點還有賴於數理邏輯學對可計算性理論的發展,才得以實現。.

查看 丟番圖集和希爾伯特第十問題

四平方和定理

四平方和定理 (Lagrange's four-square theorem) 說明每个正整数均可表示为4个整数的平方和。它是費馬多邊形數定理和華林問題的特例。 注意有些整數不可表示為3個整數的平方和,例如7。.

查看 丟番圖集和四平方和定理

递归可枚举集合

递归可枚举集合(Recursively enumerable set)是可计算性理论或更狭义的递归论中的一个概念。可数集合S被称为是递归可枚举、计算可枚举的、半可判定的或可证明的,如果.

查看 丟番圖集和递归可枚举集合

斐波那契数列

--(意大利语:Successione di Fibonacci),又譯為費波拿契數列、費波那西數列、費氏數列、黃金分割數列。 在數學上,費波那契數列是以遞歸的方法來定義:.

查看 丟番圖集和斐波那契数列

另见

丟番圖方程

希尔伯特问题