目录
变旋
变旋(Mutarotation)是环状单糖或糖苷的比旋光度由于其α-和β-端基差向异构体达到平衡而发生变化,最终达到一个稳定的平衡值的现象。变旋现象往往能被某些酸或碱催化。 例如,从水溶液结晶出来的不含结晶水的D-葡萄糖,其水溶液的初始比旋光度为+112°,经放置后,它逐渐转变为一个恒定的值+52.7°。相反,将D-葡萄糖晶体的浓水溶液在醋酸中结晶,其水溶液的初始比旋光度为+18.7°,经放置后,也逐渐转变为恒定值+52.7°。这便是由于变旋现象的缘故。.
查看 呋喃糖和变旋
吡喃糖
吡喃糖(英語:Pyranose)是一種糖,用於總稱碳水化合物所具有的化學結構,其中包含一個由5個碳原子和1個氧原子所組成的六元環狀結構。可能會有其他的碳原子在環以外。吡喃糖是吡喃的衍生物,但是吡喃糖環沒有雙鍵。如果吡喃糖1號碳上的異頭羥基已經變為OR基團則被稱為吡喃糖苷。.
查看 呋喃糖和吡喃糖
己酮糖
己酮糖是分子中有酮基的己糖,主要有阿洛酮糖、果糖、山梨糖、塔格糖等。.
查看 呋喃糖和己酮糖
呋喃
呋喃(furan)是一种含有一个由四个碳原子和一个氧原子的五元芳环的杂环有机物。含有呋喃环的化合物即為呋喃的同系物。呋喃是一种无色、可燃、易挥发液体,沸点接近于室温。呋喃具有毒性且為2B類可能致癌物質。它常作为合成其他复杂有机物的起始原料。呋喃性质与苯相似,可由松木蒸馏得到,可溶於多種常見的有機溶劑,包括丙酮、醇、醚,微溶於水。為多种重要的工業化學品與藥物的前驅體,如常被作為溶劑使用的四氢呋喃。.
查看 呋喃糖和呋喃
哈沃斯投影式
哈沃斯投影式(Haworth projection),是表示单糖、双糖或多糖所含单糖环形结构的一种常用方法,名称来源于英国化学家沃尔特·霍沃思。 哈沃斯透视式有以下特征:.
查看 呋喃糖和哈沃斯投影式
碳
碳(Carbon,拉丁文意為煤炭)是一種化學元素,符號為C,原子序数為6,位於元素週期表中的IV A族,屬於非金屬。每個碳原子有四顆能夠進行鍵合的電子,因此其化合價通常為4。自然產生的碳由三種同位素組成:12C和13C為穩定同位素,而14C則具放射性,其半衰期約為5,730年。碳是少數幾個自遠古就被發現的元素之一(見化學元素發現年表)。 碳的同素異形體有數種,最常見的包括:石墨、鑽石及無定形碳。這些同素異形體之間的物理性質,包括外表、硬度、電導率等等,都具有極大的差異。在正常條件下,鑽石、碳納米管和石墨烯的熱導率是已知材質中最高的。 所有碳的同素異形體在一般條件下都呈固态,其中石墨的熱力學穩定性最高。它們不易受化學侵蝕,甚至連氧都要在高溫下才可與其反應。碳在無機化合物中最常見的氧化態為+4,並在一氧化碳及過渡金屬羰基配合物中呈+2態。無機碳主要來自石灰石、白雲石和二氧化碳,但也大量出現在煤、泥炭、石油和甲烷水合物等有機礦藏中。碳是所有元素中化合物种类最多的,目前有近一千萬種已記錄的純有機化合物,但這只是理論上可以存在的化合物中的冰山一角。 碳的豐度在地球地殼中排列第15(见地球的地殼元素豐度列表),並在全宇宙中排列第4(见化學元素豐度),名列氫、氦和氧之下。由於碳元素極為充沛,再加上它在地球環境下所能產生的聚合物種類極為繁多,因此碳是地球上所有生物的化學根本。.
查看 呋喃糖和碳
碳水化合物
#重定向 糖类.
查看 呋喃糖和碳水化合物
羟基
基,又称氢氧基,化学式为–OH,是含有氧原子以共價鍵與氫原子連接的化學官能團,有時也稱為醇官能團,是常见的极性基团。羥基基團以共價鍵結合羰基(–C.
查看 呋喃糖和羟基
英语
英语(English,)是一种西日耳曼语言,诞生于中世纪早期的英格兰,如今具有全球通用语的地位。“英语”一词源于迁居英格兰的日耳曼部落盎格鲁(Angles),而“盎格鲁”得名于临波罗的海的半岛盎格里亚(Anglia)。弗里西语是与英语最相近的语言。英语词汇在中世纪早期受到了其他日耳曼族语言的大量影响,后来受罗曼族语言尤其是法语的影响。英语是将近六十个国家唯一的官方语言或官方语言之一,也是全世界最多國家的官方語言。它是英国、美国、加拿大、澳大利亚、爱尔兰和新西兰最常用的语言,也在加勒比、非洲及南亚的部分地区被广泛使用。它是世界上母语人口第三多的语言,仅次于汉语和西班牙语。英语是学习者最多的第二外语跟學習者最多的第一外語,是联合国、欧盟和许多其他国际组织的官方语言。它是使用最广泛的日耳曼族语言,至少70%的日耳曼语族使用者说英语。 英语有1400多年的发展史。公元5世纪,盎格魯-撒克遜人把他们的各种盎格鲁-弗里西语方言带到了大不列顛島,它们被称为古英语。中古英语始于11世纪后期的诺曼征服,这一时期英语受到了法语的影响。15世纪末伦敦对印刷机的采用、《钦定版圣经》的出版及元音大推移标志了近代英语的开端。通过大英帝国对全球的影响,现代英语在17世纪至20世纪中叶传播到了世界各地。通过各种印刷和电子媒体,随着美国取得全球超级大国地位,英语已经成为了国际对话中居领导地位的世界語言。它还是许多地区和行业(如科学、导航、法律等)的通用语。 现代英语和很多其他语言相比屈折变化较少,更多地依靠助動詞和语序来表达复杂的时态、体和语气,以及被動語態、疑问和一些否定。英语的各种口音和方言在发音和音位方面有显著差异,有时它们的词汇、语法和拼法也有所不同,但世界各地说英语的人能基本无碍地沟通交流。.
查看 呋喃糖和英语
雙鍵
在有機化學中,雙鍵(),是對含1根σ鍵和1根π鍵的共價鍵的分類稱呼。.
查看 呋喃糖和雙鍵
氧
氧(IUPAC名:Oxygen)是一種化學元素,符號為O,原子序為8,在元素週期表中屬於氧族。氧屬於非金屬,是具有高反應性的氧化劑,能夠與大部分元素以及其他化合物形成氧化物。氧在宇宙中的總質量在所有元素中位列第三,僅居氫和氦之下。Emsley 2001, p.297在標準溫度和壓力下,兩個氧原子会自然鍵合,形成無色無味的氧氣,即雙原子氧()。氧氣是地球大氣層的主要成分之一,在體積上佔20.8%。地球地殼中近一半的質量都是由氧和氧化物所組成。 氧是細胞呼吸作用中重要的元素。在生物體中,主要有機分子,如蛋白質、核酸、碳水化合物和脂肪等,還有組成動物外殼、牙齒和骨骼的無機化合物,都含有氧原子。生物體絕大部分的質量都由含氧原子的水組成。光合作用利用陽光的能量把水和二氧化碳轉化為氧氣。氧氣的化學反應性強,容易與其他元素結合,所以大氣層中的氧氣成分只能通過生物的光合作用持續補充。臭氧()是氧元素的另一種同素異構體,能夠較好地吸收中紫外線輻射。位於高海拔的臭氧層有助阻擋紫外線,從而保護生物圈。不過,在地表上的臭氧屬於污染物,為霧霾的副產品之一。在低地球軌道高度的單原子氧足以對航天器造成腐蝕。 卡爾·威廉·舍勒於1773年或之前在烏普薩拉最早發現氧元素。約瑟夫·普利斯特里亦於1774年在威爾特郡獨立發現氧,因為其成果的發表日期較舍勒早,所以一般被譽為氧的發現者。1777年,安東萬-羅倫·德·拉瓦節進行了一系列有關氧的實驗,推翻了當時用於解釋燃燒和腐蝕的燃素說。他也提出了氧的現用IUPAC名稱「oxygen」,源自希臘語中的「ὀξύς」(oxys,尖銳,指酸)和「-γενής」(-genes,產生者)。這是因為命名之時,人們曾以為所有酸都必須含有氧。許多化學詞彙都在清末傳入中國,其中原法文元素名「oxygène」被譯為「養」,後譯為「氱」,最終演變為今天的中文名「氧」。 氧的應用包括暖氣、內燃機、鋼鐵、塑料和布料的生產、金屬氣焊和氣割、火箭推進劑、及航空器、潛艇、載人航天器和潛水所用的生命保障系統。.
查看 呋喃糖和氧
戊糖
戊醣(英語:Pentose),又称为五碳醣,是一種含有5個碳原子的單醣。在1號碳上有醛基的稱為五碳醛糖(戊醛糖);2號碳上有酮基的稱為五碳酮糖(戊酮糖)。戊醛糖有3个手性中心,因此可能有8种旋光异构体。.
查看 呋喃糖和戊糖
手性
手性,又稱對掌性(英语:chirality、iː)一词源于希腊语词干“手”χειρ(chir),在多种学科中表示一种重要的对称特点。 如果某物体与其镜像不同,则其被称为“手性的(英语:chiral)”,且其镜像是不能与原物体重合的,就如同左手和右手互为镜像而无法叠合。手性物体与其镜像被称为对映体(enantiomorph,希腊语意为“相对/相反形式”);在有关分子概念的引用中也被称为对映异构体。可与其镜像叠合的物体被称为非手性的(achiral),有时也称为双向的(amphichiral)。.
查看 呋喃糖和手性
另见
糖化学
- 佛尔递降反应
- 变旋
- 吡喃糖
- 呋喃糖
- 哈沃斯投影式
- 唾液酸
- 單醣
- 多糖
- 寡醣
- 施陶丁格反应
- 柯尼希斯-克诺尔反应
- 神经氨酸酶
- 端基差向异构
- 端基异构效应
- 糖组学
- 糖脂
- 糖苷
- 糖苷水解酶
- 糖苷配基
- 糖苷键
- 费歇尔投影式
- 费歇尔糖苷化
- 赫尔曼·埃米尔·费歇尔
- 還原糖
- 醣基化
- 醣蛋白
- 雙醣
亦称为 Furanose。