我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

击中时

指数 击中时

击中时也称为命中时、首中时,是数学中随机过程研究里出现的一个概念,表示一个随机过程首次接触到状态空间的某个子集的时间。在特定的例子中,也会被称为离时(脱离时间)或回时(首次回归时间)。.

目录

  1. 19 关系: 停时博雷爾集子集实数循序可测过程状态空间维纳过程电子滤波器随机变量随机过程补集自然数适应过程期望值指标集测度方差时间数学

  2. 随机过程

停时

在概率论中,尤其在随机过程的研究中,停时是一种特殊的“随机时刻”。 停止规则和停时理论常在概率论和统计学中被提到和应用,其中著名的有。停时同时在数学证明中也被频繁应用——“驯服时间这一连续统” 。.

查看 击中时和停时

博雷爾集

在数学中,一个博雷尔集是指在一个指定的拓扑空间中,可由其开集(或者等价地,可由其闭集)的可数次并运算、可数次交运算和(或)差运算得到的一个集合。博雷尔集是由埃米尔·博雷尔的名字命名的。 对于一个拓扑空间X,其所有博雷尔集的全体构成一个σ-代数,称为博雷尔代数或者博雷尔σ-代数。拓扑空间X上的博雷尔代数是X上包含其所有开集(或者等价地,所有闭集)的最小的σ-代数。 博雷尔集在测度论中有着重要的意义,因为任何空间上的开集(或者闭集)上定义的测度,必然可以将定义延拓到空间所有的博雷尔集上。定义在博雷尔集上的测度被称为博雷尔测度。博雷尔集和相关的博雷尔分层在描述集合论中也起着基础性的作用。 在某些语境下,博雷尔集被定义为是由拓扑空间中的紧集而不是开集生成的。两个定义在很多良态的空间中是等价的,包括所有σ-紧的豪斯多夫空间,但是在具有病态性质的空间中两者可能不同。.

查看 击中时和博雷爾集

子集

子集,為某個集合中一部分的集合,故亦稱部分集合。 若A和B为集合,且A的所有元素都是B的元素,则有:.

查看 击中时和子集

实数

实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.

查看 击中时和实数

循序可测过程

在数学中,循序可测是随机过程的一种性质。循序可测性质是随机过程研究中用到的一种重要性质,能够保证停过程的可测性。循序可测性比随机过程的适应性更加严格。循序可测过程在伊藤积分理论中有重要应用。.

查看 击中时和循序可测过程

状态空间

态空间是控制工程中的一個名詞。状态是指在系统中可决定系统状态、最小数目变量的有序集合。而所谓状态空间则是指该系统全部可能状态的集合。簡單來說,状态空间可以視為一個以狀態變數為座標軸的空間,因此系統的狀態可以表示為此空間中的一個向量。 状态空间表示法即為一種將物理系統表示為一組輸入、輸出及狀態的數學模式,而輸入、輸出及狀態之間的關係可用許多一階微分方程來描述。 為了使數學模式不受輸入、輸出及狀態的個數所影響,輸入、輸出及狀態都會以向量的形式表示,而微分方程(若是線性非時變系統,可將微分方程轉變為代數方程)則會以矩陣的形式來來表示。 状态空间表示法提供一種方便簡捷的方法來針對多輸入、多輸出的系統進行分析並建立模型。一般頻域的系統處理方式需限制在常係數,啟始條件為0的系統。而状态空间表示法對系統的係數及啟始條件沒有限制。.

查看 击中时和状态空间

维纳过程

数学中,维纳过程(Wiener process)是一种连续时间随机过程,得名于诺伯特·维纳。由于与物理学中的布朗运动有密切关系,也常被称为“布朗运动过程”或简称为布朗运动。维纳过程是莱维过程(指左极限右连续的平稳独立增量随机过程)中最有名的一类,在纯数学、应用数学、经济学与物理学中都有重要应用。 维纳过程的地位在纯数学中与在应用数学中同等重要。在纯数学中,维纳过程导致了对连续鞅理论的研究,是刻画一系列重要的复杂过程的基本工具。它在随机分析、扩散过程和位势论领域的研究中是不可或缺的。在应用数学中,维纳过程可以描述高斯白噪声的积分形式。在电子工程中,维纳过程是建立噪音的数学模型的重要部分。控制论中,维纳过程可以用来表示不可知因素。 维纳过程和物理学中的布朗运动有密切关系。布朗运动是指悬浮在液体中的花粉微小颗粒所进行的无休止随机运动。维纳运动也可以描述由福克-普朗克方程和郎之万方程确定的其他随机运动。维纳过程构成了量子力學的严谨路徑積分表述的基础(根据费曼-卡茨公式,薛定谔方程的解可以用维纳过程表示)。金融数学中,维纳过程可以用于描述期权定价模型如布莱克-斯科尔斯模型。.

查看 击中时和维纳过程

电子滤波器

电子滤波器(electronic filters)可执行信号处理功能的电子线路元件或裝置,它专门用于去除信号中不想要的成分或者增强所需成分。 电子濾波器有音频滤波器(wave filter)與雜訊濾波器(noise filter)等應用裝置,可以是:.

查看 击中时和电子滤波器

随机变量

給定樣本空间(S, \mathbb),如果其上的實值函數 X:S \to \mathbb是\mathbb (實值)可測函數,则稱X為(實值)随机变量。初等概率論中通常不涉及到可測性的概念,而直接把任何X:S \to \mathbb的函數稱為随机变量。 如果X指定给概率空间S中每一个事件e有一个实数X(e),同时针对每一个实数r都有一个事件集合A_r与其相对应,其中A_r.

查看 击中时和随机变量

随机过程

在概率论概念中,随机过程是随机变量的集合。若一随机系统的样本点是随机函数,则称此函数为样本函数,这一随机系统全部样本函数的集合是一个随机过程。实际应用中,样本函数的一般定义在时间域或者空间域。随机过程的实例如股票和汇率的波动、语音信号、视频信号、体温的变化,反对法随机运动如布朗运动、随机徘徊等等。.

查看 击中时和随机过程

补集

在集合论和数学的其他分支中,存在--的两种定义:--和--。.

查看 击中时和补集

自然数

数学中,自然数指用于计数(如「桌子上有三个苹果」)和定序(如「国内第三大城市」)的数字。用于计数时称之为基数,用于定序时称之为序数。 自然数的定义不一,可以指正整数 (1, 2, 3, 4, \ldots),亦可以指非负整数 (0, 1, 2, 3, 4, \ldots)。前者多在数论中使用,后者多在集合论和计算机科学中使用,也是 标准中所采用的定义。 数学家一般以\mathbb代表以自然数组成的集合。自然数集是一個可數的,無上界的無窮集合。.

查看 击中时和自然数

适应过程

适应过程是随机过程研究中常见的概念,表示不能“预见未来”的随机过程。正式的数学解释是,一个随机过程是适应于某个参考族的,当且仅当在任意的特定时刻,随机过程都是可测的。适应过程是随机过程理论中很多重要概念的基础。比如说能够定义伊藤积分的随机过程就需要是适应过程。.

查看 击中时和适应过程

期望值

在概率论和统计学中,一个离散性随机变量的期望值(或数学期望、或均值,亦简称期望,物理学中称为期待值)是试验中每次可能的结果乘以其结果概率的总和。换句话说,期望值像是随机试验在同样的机会下重复多次,所有那些可能狀態平均的结果,便基本上等同“期望值”所期望的數。需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。(换句话说,期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合裡。) 例如,掷一枚公平的六面骰子,其每次「點數」的期望值是3.5,计算如下: \operatorname(X)&.

查看 击中时和期望值

指标集

在数学中,集合 A 的元素有時可以凭借某個集合 J 来索引(index)或标定(label),這時便稱集合 J 為索引集。索引由从 J 到 A 的一个满射函数构成,而被索引的搜集稱為索引族、標記族或加標族,通常写为(Aj)j∈J。.

查看 击中时和指标集

测度

数学上,测度(Measure)是一个函数,它对一个给定集合的某些子集指定一个数,这个数可以比作大小、体积、概率等等。传统的积分是在区间上进行的,后来人们希望把积分推广到任意的集合上,就发展出测度的概念,它在数学分析和概率论有重要的地位。 测度论是实分析的一个分支,研究对象有σ代数、测度、可测函数和积分,其重要性在概率论和统计学中都有所体现。.

查看 击中时和测度

方差

方差(Variance),應用數學裡的專有名詞。在概率论和统计学中,一个随机变量的方差描述的是它的离散程度,也就是该变量离其期望值的距离。一个实随机变量的方差也称为它的二阶矩或二階中心動差,恰巧也是它的二阶累积量。這裡把複雜說白了,就是將各個誤差將之平方(而非取絕對值,使之肯定為正數),相加之後再除以總數,透過這樣的方式來算出各個數據分佈、零散(相對中心點)的程度。繼續延伸的話,方差的算术平方根称为该随机变量的标准差(此為相對各個數據點間)。.

查看 击中时和方差

时间

時間是一种尺度,在物理定义是标量,藉著时间,事件发生之先后可以按过去-现在-未来之序列得以确定(时间点),也可以衡量事件持續的期間以及事件之間和间隔长短(时间段) 。時間是除了空間三個維度以外的第四維度。 長久以來,時間一直是宗教、哲學及科學領域的研究主題之一,但學者們尚且無法為時間找到一個可以適用於各領域、具有一致性且又不循環的定義 。然而在商業、工業、體育、科學及表演藝術等領域都有一些各自來標示及度量時間的方法 108 pages 。一些簡單,爭議較小的定義包括「時間是時鐘量測的物理量。」及「時間使得所有事情不會同時發生。」, 哲學家對於時間有兩派不同的觀點:一派認為時間是宇宙的基本結構,是一個會依序列方式出現的維度,像艾萨克·牛顿就對時間有這樣的觀點。包括戈特弗里德·莱布尼茨及伊曼努爾·康德在內的另一派認為時間不是任何一種已經存在的維度,也不是任何會「流動」的實存物,時間只是一種心智的概念,配合空間和數可以讓人類對事件進行排序和比較。換句話說,時間不過是人為便於思考宇宙,而對物質運動劃分,是一種人定規則。例如:愛因斯坦就曾運用相對論的概念來描述比喻時間對心理層面上的影響,藉此解釋時間並非是絕對的。.

查看 击中时和时间

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

查看 击中时和数学

另见

随机过程