目录
完全数
完全数,又稱完美數或完備數,是一些特殊的自然数:它所有的真因子(即除了自身以外的约数)的和,恰好等於它本身,完全数不可能是楔形數。 例如:第一个完全数是6,它有约数1、2、3、6,除去它本身6外,其余3个数相加,1+2+3=6,恰好等於本身。第二个完全数是28,它有约数1、2、4、7、14、28,除去它本身28外,其余5个数相加,1+2+4+7+14=28,也恰好等於本身。后面的数是496、8128。.
查看 六进制和完全数
底数
底数,很多時亦稱基數,可以指:.
查看 六进制和底数
积
积是数学中多个不同概念的称呼。算术中,两个数或多个数相乘得到的结果称为它们的积或乘积。当相乘的数是实数或复数的时候,相乘的顺序对积没有影响,这称为交换性。当相乘的是四元数或者矩阵,或者某些代数结构里的元素的时候,顺序会对作为结果的乘积造成影响。这说明这些对象的乘法没有交换性。 当相乘的对象多于两个的时候,常常使用连乘号∏(大写的)表示。就如同多个对象的加法使用∑作为符号一样。一般约定,相乘的对象只有一个的时候,乘积是对象本身;没有相乘的对象时也可以约定所谓的“空积”为1。.
查看 六进制和积
素数
質--數(Prime number),又称素--数,指在大於1的自然数中,除了1和該数自身外,無法被其他自然数整除的数(也可定義為只有1與該數本身两个正因数的数)。大於1的自然數若不是質數,則稱之為合數。例如,5是個質數,因為其正因數只有1與5。而6則是個合數,因為除了1與6外,2與3也是其正因數。算術基本定理確立了質數於數論裡的核心地位:任何大於1的整數均可被表示成一串唯一質數之乘積。為了確保該定理的唯一性,1被定義為不是質數,因為在因式分解中可以有任意多個1(如3、1×3、1×1×3等都是3的有效因數分解)。 古希臘數學家歐幾里得於公元前300年前後證明有無限多個質數存在(欧几里得定理)。現時人們已發現多種驗證質數的方法。其中試除法比較簡單,但需時較長:設被測試的自然數為n,使用此方法者需逐一測試2與\sqrt之間的整數,確保它們無一能整除n。對於較大或一些具特別形式(如梅森數)的自然數,人們通常使用較有效率的演算法測試其是否為質數(例如277232917-1是直至2017年底為止已知最大的梅森質數)。雖然人們仍未發現可以完全區別質數與合數的公式,但已建構了質數的分佈模式(亦即質數在大數時的統計模式)。19世紀晚期得到證明的質數定理指出:一個任意自然數n為質數的機率反比於其數位(或n的對數)。 許多有關質數的問題依然未解,如哥德巴赫猜想(每個大於2的偶數可表示成兩個素數之和)及孿生質數猜想(存在無窮多對相差2的質數)。這些問題促進了數論各個分支的發展,主要在於數字的解析或代數方面。質數被用於資訊科技裡的幾個程序中,如公鑰加密利用了難以將大數分解成其質因數之類的性質。質數亦在其他數學領域裡形成了各種廣義化的質數概念,主要出現在代數裡,如質元素及質理想。.
查看 六进制和素数
进位制
进位制是一种记数方式,亦称进位计数法或位值计数法。利用这种记数法,可以使用有限种数字符号来表示所有的数值。一种进位制中可以使用的数字符号的数目称为这种进位制的基数或底数。若一个进位制的基数为n,即可称之为n进位制,简称n进制。现在最常用的进位制是十进制,这种进位制通常使用10个阿拉伯数字(即0-9)进行记数。 我们可以用不同的进位制来表示同一个数。比如:十进数,可以用二进制表示为,也可以用五进制表示为,同时也可以用八进制表示为,可用十二進制表示為,亦可用十六进制表示为,它们所代表的数值都是一样的。 在10进制中有10个数字(0 - 9),比如 在16进制中有16个数字(0–9 和 A–F),比如 一般说来,b进制有b个数字,如果 a_3, a_2, a_1, a_0 是其中四个数字,那么就有.
查看 六进制和进位制
6
6(六)是5与7之间的自然数。.
查看 六进制和6