我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

佩多不等式

指数 佩多不等式

幾何學的佩多不等式,是關連兩個三角形的不等式,以唐·佩多(Don Pedoe)命名。這不等式指出:如果第一個三角形的邊長為a,b,c,面積為f,第二個三角形的邊長為A,B,C,面積為F,那麼: 等式成立當且僅當兩個三角形為一對相似三角形,對應邊成比例; 也就是\tfrac.

目录

  1. 9 关系: 外森比克不等式不等式三角形当且仅当几何学相似三角形面积柯西-施瓦茨不等式海伦公式

外森比克不等式

外森比克不等式(Weitzenböck's inequality)是有关三角形边长和面积的一个不等式。設三角形的邊長為a,b,c,面積為A,則外森比克不等式声称a^2+b^2+c^2 \ge 4 \sqrt A成立。若且唯若三角形為等邊三角形,等號成立。佩多不等式是外森比克不等式的推广。 在1961年国际奥林匹克数学竞赛中,此题曾被要求学生证明。.

查看 佩多不等式和外森比克不等式

不等式

不等式是數學名詞,是指表示二個量之間不等的敘述。一般常會表示成二個表示式表示要探討的量,中間再加上不等關係的符號,表示兩者的關係。以下是一些不等式的例子: 有些作者認為不等式只能用來表示中間有出現不等號≠的關係式.

查看 佩多不等式和不等式

三角形

三角形,又稱三邊形,是由三条线段顺次首尾相连,或不共線的三點兩兩連接,所组成的一个闭合的平面图形,是最基本和最少邊的多边形。 一般用大写英语字母A、B和C为三角形的顶点标号;用小写英语字母a、b和c表示边;用\alpha、\beta和\gamma給角標號,又或者以\angle ABC這樣的顶点标号表示。.

查看 佩多不等式和三角形

当且仅当

当且仅当(If and only if)(中国大陆又称作当且--仅当,臺灣又称作若且--唯若),在--邏輯中,逻辑算符反互斥或閘(exclusive or)是对两个运算元的一种邏輯分析类型,符号为XNOR或ENOR或\Leftrightarrow。与一般的邏輯或非NOR不同,當兩兩數值相同為是,而數值不同時為否。在数学、哲学、逻辑学以及其他一些技术性领域中被用来表示“在,并且仅仅在这些条件成立的时候”之意,在英语中的对应标记为iff。“A当且仅当B”其他等价的说法有“当且仅当A則B”;“A是B的充分必要条件(充要條件)”。 一般而言,當我們看到“A当且仅当B”,我們可以知道“如果A成立時,則B一定成立;如果B成立時,則A也一定成立”;“如果A不成立時,則B一定不成立;如果B不成立時,則A也一定不成立”。.

查看 佩多不等式和当且仅当

几何学

笛沙格定理的描述,笛沙格定理是欧几里得几何及射影几何的重要結果 幾何學(英语:Geometry,γεωμετρία)簡稱幾何。几何学是數學的一个基础分支,主要研究形狀、大小、圖形的相對位置等空間区域關係以及空间形式的度量。 許多文化中都有幾何學的發展,包括許多有關長度、面積及體積的知識,在西元前六世紀泰勒斯的時代,西方世界開始將幾何學視為數學的一部份。西元前三世紀,幾何學中加入歐幾里德的公理,產生的欧几里得几何是往後幾個世紀的幾何學標準。阿基米德發展了計算面積及體積的方法,許多都用到積分的概念。天文學中有關恆星和行星在天球上的相對位置,以及其相對運動的關係,都是後續一千五百年中探討的主題。幾何和天文都列在西方博雅教育中的四術中,是中古世紀西方大學教授的內容之一。 勒內·笛卡兒發明的坐標系以及當時代數的發展讓幾何學進入新的階段,像平面曲線等幾何圖形可以由函數或是方程等解析的方式表示。這對於十七世紀微積分的引入有重要的影響。透视投影的理論讓人們知道,幾何學不只是物體的度量屬性而已,透视投影後來衍生出射影几何。歐拉及高斯開始有關幾何物件本體性質的研究,使幾何的主題繼續擴充,最後產生了拓扑学及微分幾何。 在歐幾里德的時代,實際空間和幾何空間之間沒有明顯的區別,但自從十九世紀發現非歐幾何後,空間的概念有了大幅的調整,也開始出現哪一種幾何空間最符合實際空間的問題。在二十世紀形式數學興起以後,空間(包括點、線、面)已沒有其直觀的概念在內。今日需要區分實體空間、幾何空間(點、線、面仍沒有其直觀的概念在內)以及抽象空間。當代的幾何學考慮流形,空間的概念比歐幾里德中的更加抽象,兩者只在極小尺寸下才彼此近似。這些空間可以加入額外的結構,因此可以考慮其長度。近代的幾何學和物理關係密切,就像偽黎曼流形和廣義相對論的關係一樣。物理理論中最年輕的弦理論也和幾何學有密切關係。 几何学可見的特性讓它比代數、數論等數學領域更容易讓人接觸,不過一些几何語言已經和原來傳統的、欧几里得几何下的定義越差越遠,例如碎形幾何及解析幾何等。 現代概念上的幾何其抽象程度和一般化程度大幅提高,並與分析、抽象代數和拓撲學緊密結合。 幾何學應用於許多領域,包括藝術,建築,物理和其他數學領域。.

查看 佩多不等式和几何学

相似三角形

如右圖,兩個三角形,三個對應的內角的角度都一樣(但邊長大小不需一樣)的兩個三角形,或:对应角相等,对应边成比例的两个三角形稱為「相似三角形(similar triangles)」,其对应边之比称为相似比;两个相似比为1的相似三角形称为全等三角形。.

查看 佩多不等式和相似三角形

面积

面積是一個用作表示一個曲面或平面圖形所佔範圍的量,可看成是長度(一維度量)及體積(三維度量)的二維類比。對三維立體圖形而言,圖形的邊界的面積稱為表面積。 計算各基本平面圖形面積及基本立體圖形的表面積公式早已為古希臘及古中國人所熟知。 面積在近代數學中佔相當重要的角色。面積除與幾何學及微積分有關外,亦與線性代數中的行列式有關。在分析學中,平面的面積通常以勒貝格測度(Lebesgue measure)定義。 我們可以利用公理,將面積定義為一個由平面圖形的集合映射至實數的函數。.

查看 佩多不等式和面积

柯西-施瓦茨不等式

數學上,柯西-施瓦茨不等式,又稱施瓦茨不等式或柯西-布尼亞科夫斯基-施瓦茨不等式,是一條很多場合都用得上的不等式;例如線性代數的矢量,數學分析的無窮級數和乘積的積分,和概率論的方差和協方差。它被认为是最重要的数学不等式之一。它有一些推广,如赫尔德不等式。 不等式以奧古斯丁·路易·柯西(Augustin Louis Cauchy),赫爾曼·阿曼杜斯·施瓦茨(Hermann Amandus Schwarz),和(Виктор Яковлевич Буняковский)命名。.

查看 佩多不等式和柯西-施瓦茨不等式

海伦公式

--(Heron's formula或Hero's formula),又譯--,亦称“海伦-秦九韶公式”。此公式是亞歷山大港的希羅發現的,並可在其於公元60年的《Metrica》中找到其證明,利用三角形的三條邊長來求取三角形面積。亦有認為早於阿基米德已經懂得這條公式,而由於《Metrica》是一部古代數學知識的結集,该公式的發現時期很有可能先於希羅的著作。 假設有一個三角形,邊長分別為a, b,c ,三角形的面積A可由以下公式求得: 中国南宋末年数学家秦九韶发现或知道等价的公式,其著作《数书九章》卷五第二题即三斜求积。“问沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里,里法三百步,欲知为田几何?”答曰:“三百十五顷.”其术文是:“以小斜幂併大斜幂,減中斜幂,餘半之,自乘於上;以小斜幂乘大斜幂,減上,餘四約之爲實,……開平方得積。”若以大斜记为a,中斜记为b,小斜记为c,秦九韶的方法相当于下面的一般公式: 像其他中国古代的数学家一样,他的方法没有证明。根据现代数学家吴文俊的研究,秦九韶公式可由出入相补原理得出。一些中国学者将这个公式称为秦九韶公式。 由于任何n边的多边形都可以分割成n-2个三角形,所以海伦公式可以用作求多边形面積的公式。比如说测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地导出答案。.

查看 佩多不等式和海伦公式