我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

五胞體

指数 五胞體

在幾何學中,五胞體是指有五個胞或維面的多胞體。所有五胞體中共有兩個正圖形,分別位於四維空間和五維空間,其中五維空間的正五胞體是一個射影多胞形,由五個超立方體所組成,另一個正五胞體位於四維空間,是一個單純形。.

目录

  1. 12 关系: 多面形多面体幾何體五维空间五面體五邊形底面几何学四維四面體正圖形正四面體

多面形

在幾何學中,多面形(Hosohedron)是一種由月牙形或球弓形組成的球面鑲嵌,並且使得每一個月牙形或球弓形共用相同的兩個頂點。其在施萊夫利符號中用 表示n面形。 其亦可以視為由球面正二角形組成的球面鑲嵌圖,又稱為二角形鑲嵌或二邊形鑲嵌。.

查看 五胞體和多面形

多面体

多面體(polyhedron)是指三維空間中由平面和直邊組成的幾何形體。英文 polyhedron 源於古希臘語 πολύεδρον,由poly-(詞根 πολύς,多)和 -edron(έδρα,基底、座、面)構成,即意為「多面體」。 然而,「由平面和直邊組成的有界體」的定義方式並不明確,對現代數學而言更是不合格。克羅埃西亞數學家 Grünbaum 曾評論道:“多面體理論的原罪可追溯至歐幾里得,還有之後的克卜勒、龐索、柯西……各個時期……數學家們都未能準確定義何謂『多面體』。”自此,數學家雖以特定說法對「多面體」訂定了嚴謹的定義,但任一種卻都無法完全兼容其他定義方式。.

查看 五胞體和多面体

幾何體

#重定向 幾何圖形.

查看 五胞體和幾何體

五维空间

五維空間是一個包含五個維度的空間。 以物理學的角度來說,五維空間的維度比日常生活中所提到的三維空間以及相對論中的四維空間還要多。 五維空間是一種經常在數學中出現的抽象概念。在物理學和數學中,N數字的序列可以理解為表示''N''維歐幾里得空間中的位置。 宇宙的維度是否為五維同時也是個辯論的話題。.

查看 五胞體和五维空间

五面體

在幾何學中,五面體是指由五個面組成的多面體。沒有任何五面體是正五面體,也就是說找不到面由正多邊形組成且每個面全等、每個角相等的正五面體,但若放寬限制,不考慮是否所有面全等的話則有一種多面體由正多邊形組成、邊長全部等長、所有角相等的多面體,即三角柱,有時會稱為半正五面體。五個面的多面體可以是三角柱、四角錐等多面體。此外五面體的形狀也可以用在動力不穩定性的研究上。.

查看 五胞體和五面體

五邊形

#重定向 五边形.

查看 五胞體和五邊形

底面

在幾何學中,底面是指一個立體圖形可供參照的平面,整個立體皆存在參照於該平面的性質,且可以決定整個幾何體的對稱性。例如,三角錐的底面是三角形,且其對稱性取決於底面三角形,每個截面皆與底面相似。 底面不一定會是多面體中的某一個面,例如雙五角錐和五面形,其底面為五邊形,但都不存在五邊形的面。.

查看 五胞體和底面

几何学

笛沙格定理的描述,笛沙格定理是欧几里得几何及射影几何的重要結果 幾何學(英语:Geometry,γεωμετρία)簡稱幾何。几何学是數學的一个基础分支,主要研究形狀、大小、圖形的相對位置等空間区域關係以及空间形式的度量。 許多文化中都有幾何學的發展,包括許多有關長度、面積及體積的知識,在西元前六世紀泰勒斯的時代,西方世界開始將幾何學視為數學的一部份。西元前三世紀,幾何學中加入歐幾里德的公理,產生的欧几里得几何是往後幾個世紀的幾何學標準。阿基米德發展了計算面積及體積的方法,許多都用到積分的概念。天文學中有關恆星和行星在天球上的相對位置,以及其相對運動的關係,都是後續一千五百年中探討的主題。幾何和天文都列在西方博雅教育中的四術中,是中古世紀西方大學教授的內容之一。 勒內·笛卡兒發明的坐標系以及當時代數的發展讓幾何學進入新的階段,像平面曲線等幾何圖形可以由函數或是方程等解析的方式表示。這對於十七世紀微積分的引入有重要的影響。透视投影的理論讓人們知道,幾何學不只是物體的度量屬性而已,透视投影後來衍生出射影几何。歐拉及高斯開始有關幾何物件本體性質的研究,使幾何的主題繼續擴充,最後產生了拓扑学及微分幾何。 在歐幾里德的時代,實際空間和幾何空間之間沒有明顯的區別,但自從十九世紀發現非歐幾何後,空間的概念有了大幅的調整,也開始出現哪一種幾何空間最符合實際空間的問題。在二十世紀形式數學興起以後,空間(包括點、線、面)已沒有其直觀的概念在內。今日需要區分實體空間、幾何空間(點、線、面仍沒有其直觀的概念在內)以及抽象空間。當代的幾何學考慮流形,空間的概念比歐幾里德中的更加抽象,兩者只在極小尺寸下才彼此近似。這些空間可以加入額外的結構,因此可以考慮其長度。近代的幾何學和物理關係密切,就像偽黎曼流形和廣義相對論的關係一樣。物理理論中最年輕的弦理論也和幾何學有密切關係。 几何学可見的特性讓它比代數、數論等數學領域更容易讓人接觸,不過一些几何語言已經和原來傳統的、欧几里得几何下的定義越差越遠,例如碎形幾何及解析幾何等。 現代概念上的幾何其抽象程度和一般化程度大幅提高,並與分析、抽象代數和拓撲學緊密結合。 幾何學應用於許多領域,包括藝術,建築,物理和其他數學領域。.

查看 五胞體和几何学

四維

#重定向 四维空间.

查看 五胞體和四維

四面體

四面體是由四個三角形面組成的多面體,每两个三角形都有一个共同的边,每三个三角形都有一个共同的顶点。四面体有四个顶点,六条棱,四个面,是所有凸多面体中最简单的。四面體包括正四面體、鍥形體等種類,由四個全等的正三角形組成的四面體稱為正四面體。四面体也可以依角的類型分為銳角四面體、鈍角四面體、和直角四面體。 四面体是欧几里德单纯形在三维空间中的特例。 四面体也是锥体的一种。锥体是指将某个平面上的多面体的所有顶点分别和平面外的一点以线段连接後构成的多面体。按锥体的分类方法,所有四面體都是由某平面上的三角形和平面外一点构成的锥体,所以四面体也被称为三角錐。 与所有的凸多面体一样,四面体可以由某个平面图形(展开图)折叠而成。这样的展开图通常有两种。 与三角形类似,任何四面体的四个顶点都在同一个球面上。这个球称为四面体的外接球。同样地,存在一个与四面体的四个面都相切的球,称为四面体的内切球。.

查看 五胞體和四面體

正圖形

在幾何學中,正圖形又稱正多胞形(Regular polytope),即正幾何圖形,是一種對稱性对于可递的幾何體,且具有高度對稱性,對於該幾何體內所有同維度的元素(如:點、線、面)都完全具有相同的性質,並且每一個元素皆為一個正圖形,例如,正方體所有的面的面積及形狀皆相同,且皆為正方形,是一個二維正多胞形、所有邊的長度也相同,所有角的角度及形式也相同,因此正方體是一個正圖形或正多胞形。對於所有元素,或叫j維面(對所有的 0 ≤ j ≤ n,其中n是該幾何體所在的維度) — 胞、面等等 — 也都对于多胞形的对称性可递,也是≤ n维的正圖形。 正图形是正多边形(例如,正方形或者正五边形)和正多面体(例如立方体)的向任意维度的推广类比。正图形极强的对称性使它们拥有极强的审美价值,吸引着数学家和数学爱好者。 一般地,n维正图形被定义为有正和正顶点图。这两个条件已经能充分地保证所有面、所有顶点都是相似的。但要注意的是,这一定义并不适用于。 一个正图形能用形式为的施莱夫利符号代表,其正的面为,顶点图为。.

查看 五胞體和正圖形

正四面體

正四面體是由四個等邊三角形組成的正多面體,是一种錐體,有4個頂點,6條邊和4个正三角形面。 將立方體的其中四個頂點两两相連,而這四個頂點任何兩條都沒有落在立方體同一條的邊上,可得到一個正四面體,其邊長為立方體邊長的\sqrt,其體積為立方體體積的\frac,从这里看,正四面体是半立方体。 正四面体是一个拥有无穷多个成员的多胞形家族—正单纯形家族的3维成员。正四面体是一种棱锥体,即它可以被描述成由一个多边形底面和链接底面和一个共同顶点的三角形面组成,对于正四面体来说,这个底面是正三角形,并且它的侧面也都是正三角形,应此正四面体是正三棱锥。 正四面体是三维的正单纯形(3-simplex),这意味着四面体是三维中最简单的多面体,顶点数、棱数、面数比它少的多面体都只能成为退化多面体,同时在更高维的超空间中,任意4个顶点一定共在同一三维空间中,这4个顶点若不存在四点共面、三点共线和两点重合的情况,一定能构成一个四面体,并且只要6条棱的长度确定了,四面体就被唯一确定了(即四面体具有稳定性。这是单纯形面多胞形共有的一个基本特性),由此可知,一个四面体的6条棱长都相等,则其一定是一个正四面体。正四面体是柏拉图立体中唯一一个所有顶点之间的距离都相等的,同时正四面体也是三维空间中使4个顶点每两个顶点间距离相等的唯一方式。.

查看 五胞體和正四面體