我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

五胞體和正四面體

快捷方式: 差异相似杰卡德相似系数参考

五胞體和正四面體之间的区别

五胞體 vs. 正四面體

在幾何學中,五胞體是指有五個胞或維面的多胞體。所有五胞體中共有兩個正圖形,分別位於四維空間和五維空間,其中五維空間的正五胞體是一個射影多胞形,由五個超立方體所組成,另一個正五胞體位於四維空間,是一個單純形。. 正四面體是由四個等邊三角形組成的正多面體,是一种錐體,有4個頂點,6條邊和4个正三角形面。 將立方體的其中四個頂點两两相連,而這四個頂點任何兩條都沒有落在立方體同一條的邊上,可得到一個正四面體,其邊長為立方體邊長的\sqrt,其體積為立方體體積的\frac,从这里看,正四面体是半立方体。 正四面体是一个拥有无穷多个成员的多胞形家族—正单纯形家族的3维成员。正四面体是一种棱锥体,即它可以被描述成由一个多边形底面和链接底面和一个共同顶点的三角形面组成,对于正四面体来说,这个底面是正三角形,并且它的侧面也都是正三角形,应此正四面体是正三棱锥。 正四面体是三维的正单纯形(3-simplex),这意味着四面体是三维中最简单的多面体,顶点数、棱数、面数比它少的多面体都只能成为退化多面体,同时在更高维的超空间中,任意4个顶点一定共在同一三维空间中,这4个顶点若不存在四点共面、三点共线和两点重合的情况,一定能构成一个四面体,并且只要6条棱的长度确定了,四面体就被唯一确定了(即四面体具有稳定性。这是单纯形面多胞形共有的一个基本特性),由此可知,一个四面体的6条棱长都相等,则其一定是一个正四面体。正四面体是柏拉图立体中唯一一个所有顶点之间的距离都相等的,同时正四面体也是三维空间中使4个顶点每两个顶点间距离相等的唯一方式。.

之间五胞體和正四面體相似

五胞體和正四面體有(在联盟百科)3共同点: 多面形多面体四面體

多面形

在幾何學中,多面形(Hosohedron)是一種由月牙形或球弓形組成的球面鑲嵌,並且使得每一個月牙形或球弓形共用相同的兩個頂點。其在施萊夫利符號中用 表示n面形。 其亦可以視為由球面正二角形組成的球面鑲嵌圖,又稱為二角形鑲嵌或二邊形鑲嵌。.

五胞體和多面形 · 多面形和正四面體 · 查看更多 »

多面体

多面體(polyhedron)是指三維空間中由平面和直邊組成的幾何形體。英文 polyhedron 源於古希臘語 πολύεδρον,由poly-(詞根 πολύς,多)和 -edron(έδρα,基底、座、面)構成,即意為「多面體」。 然而,「由平面和直邊組成的有界體」的定義方式並不明確,對現代數學而言更是不合格。克羅埃西亞數學家 Grünbaum 曾評論道:“多面體理論的原罪可追溯至歐幾里得,還有之後的克卜勒、龐索、柯西……各個時期……數學家們都未能準確定義何謂『多面體』。”自此,數學家雖以特定說法對「多面體」訂定了嚴謹的定義,但任一種卻都無法完全兼容其他定義方式。.

五胞體和多面体 · 多面体和正四面體 · 查看更多 »

四面體

四面體是由四個三角形面組成的多面體,每两个三角形都有一个共同的边,每三个三角形都有一个共同的顶点。四面体有四个顶点,六条棱,四个面,是所有凸多面体中最简单的。四面體包括正四面體、鍥形體等種類,由四個全等的正三角形組成的四面體稱為正四面體。四面体也可以依角的類型分為銳角四面體、鈍角四面體、和直角四面體。 四面体是欧几里德单纯形在三维空间中的特例。 四面体也是锥体的一种。锥体是指将某个平面上的多面体的所有顶点分别和平面外的一点以线段连接後构成的多面体。按锥体的分类方法,所有四面體都是由某平面上的三角形和平面外一点构成的锥体,所以四面体也被称为三角錐。 与所有的凸多面体一样,四面体可以由某个平面图形(展开图)折叠而成。这样的展开图通常有两种。 与三角形类似,任何四面体的四个顶点都在同一个球面上。这个球称为四面体的外接球。同样地,存在一个与四面体的四个面都相切的球,称为四面体的内切球。.

五胞體和四面體 · 四面體和正四面體 · 查看更多 »

上面的列表回答下列问题

五胞體和正四面體之间的比较

五胞體有12个关系,而正四面體有55个。由于它们的共同之处3,杰卡德指数为4.48% = 3 / (12 + 55)。

参考

本文介绍五胞體和正四面體之间的关系。要访问该信息提取每篇文章,请访问: