目录
偏序关系
偏序集合(Partially ordered set,简写poset)是数学中,特别是序理论中,指配备了部分排序关系的集合。 这个理論將排序、顺序或排列这个集合的元素的直觉概念抽象化。这种排序不必然需要是全部的,就是说不必要保证此集合内的所有对象的相互可比较性。部分排序集合定义了部分排拓扑。.
米田引理
在範疇論中,米田引理斷言一個對象X的性質由它所表示的函子\mathrm(X,-)或\mathrm(-,X)决定。此引理得名于日本數學家暨計算機科學家米田信夫。.
自然變換
在數學的範疇論中,自然變換是將一個函子變為另一個函子,使相關範疇的內在結構(就是態射間的複合)得以保持。因此可以將自然變換視為「函子間的態射」。這一看法其實也能形式化,定義出函子範疇。自然變換與範疇及函子一樣,都是範疇論很基本的概念。.
数学
数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.
查看 預層 (范疇論)和数学