徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

指数 镎

錼(Neptunium,--)是一種化學元素,符號為Np,原子序為93。錼是首個超鈾元素,屬於錒系金屬。錼具有放射性,其最穩定的同位素237Np是核反應爐和鈈生產過程的副產品,能夠用於製造中子探測儀。由於核嬗變反應,鈾礦當中存在著微量錼元素。.

66 关系: 埃德温·麦克米伦原子序数原子量半衰期卡西米爾·法揚斯同位素同素异形体天王星中子中子俘获乏核燃料弱相互作用微克德米特里·伊万诺维奇·门捷列夫快中子增殖反应堆地球的年齡化學元素化學元素發現年表兩性 (化學)六氟化鈾四方晶系立方晶系美國能源部羅馬尼亞瀝青鈾礦菲力普·艾貝爾森順磁性衰變鏈骨骼質子超铀元素鈾-235鈾-238開氏度蒸汽锕系元素臨界質量金属鉛的同位素...鋂-241核反应堆核裂变核武器正交晶系氧化物法国洛斯阿拉莫斯国家实验室濃縮鈾海王星摄氏温标放射性放射性同位素放射性同位素熱電機 扩展索引 (16 更多) »

埃德温·麦克米伦

埃德温·马蒂森·麦克米伦(Edwin Mattison McMillan,),生于美国加利福尼亚州雷東多海灘 (加利福尼亞州),美国化学家,1951年获諾貝爾化學獎。 M M M M Category:美国国家科学奖获奖者.

新!!: 镎和埃德温·麦克米伦 · 查看更多 »

原子序数

原子序数(Atomic Number)是一个原子核内质子的数量,因此也稱質子數,也等於原子電中性時的核外電子數。拥有同一原子序的原子属于同一化学元素。原子序数的符号是Z。 通常原子序数标在元素符号的左下方: 1H是氢,8O是氧。 但特定元素的原子序总是确定的,因此这个值很少这样写。 德米特里·门捷列夫在制定其元素周期表时发现,假如将元素按其原子核质量来排列会出现一些不规则的情况。比如碲的原子核比碘重,但从化学性能上来说,碲明显是与氧、硫、硒一族的,而碘与氟、氯、溴是一族的,也就是说,碘要排在碲之后。1913年亨利·莫塞莱发现这个异常的解决方法是不按原子重量,而按原子核的电荷数,即原子序来排列。 然而原子序数亦有负数,反氢记作-1H,反氦记作-2He。.

新!!: 镎和原子序数 · 查看更多 »

原子量

原子量(atomic mass),也称原子质量或相对原子质量,符号ma,是指單一原子的質量,其單位為原子质量单位(符號u或Da,以往曾用amu) ,定義為一个碳12原子靜止質量的。原子質量以質子和中子的質量為主,元素的原子量几近等于其質量數。 若將原子量除以原子质量单位,會得到一個無因次量,這個無因次量稱為「相對同位素質量」(relative isotopic mass)。因此碳12的原子量是12u或是12 Da,而一個碳12原子的相對同位素質量就是12。.

新!!: 镎和原子量 · 查看更多 »

半衰期

半衰期(Half-life)是指某種特定物質的浓度经过某种反应降低到剩下初始时一半所消耗的時間,半衰期是研究反应动力学的一个容易测定的重要参数,数学上可以证明,只有一级反应的半衰期是恒定的数值,且知悉一个一级反应的半衰期便可以计算出该反应的所有动力学参数,所以人们通常只关心一级反应的半衰期。常见的一级反应有:放射性核素的衰变、一级化学反应、药物在体内的吸收和代谢等。.

新!!: 镎和半衰期 · 查看更多 »

卡西米爾·法揚斯

卡西米爾·法揚斯(Kazimierz Fajans,Kasimir Fajans),波蘭猶太裔美國物理化學家,放射性科學先驅。其人生於1887年5月27日,逝于1975年5月18日。.

新!!: 镎和卡西米爾·法揚斯 · 查看更多 »

同位素

同位素(Isotope)是某種特定化學元素之下的不同種類,同一種元素下的所有同位素都具有相同原子序數,質子數目相同,但中子數目卻不同。這些同位素在化學元素週期表中佔有同一個位置,因此得名。 例如氫元素中氘和氚,它們原子核中都有1個質子,但是它們的原子核中分別有0個中子、1個中子及2個中子,所以它們互為同位素。.

新!!: 镎和同位素 · 查看更多 »

同素异形体

同素异形体,是指由同一种化学元素构成,而结构形态却不相同的單质。同素异形体由于结构不同,物理性質与化學性質上也有差異。同素异形体这一术语针对的是单质,而非化合物,更一般的术语是同质异形体,用于晶体材料。 例如磷的兩種同素異形體,紅磷和白磷,它們的燃点分別是攝氏和,充分燃燒之後的產物都是五氧化二磷;白磷(P4)有劇毒,可溶於二硫化碳,紅磷(Pn)無毒,卻不溶於二硫化碳。同素異形體之間在一定條件下可以相互轉化,這種轉化是一種化學變化。 生活中常见的有,碳的同素异形体石墨、金刚石(即钻石)、无定形碳等,磷的同素异形体白磷和红磷,氧元素的同素异形体氧气和臭氧。.

新!!: 镎和同素异形体 · 查看更多 »

天王星

天王星是從太陽系由内向外的第七顆行星,其體積在太陽系排名第三(比海王星大),質量排名第四(比海王星輕)。其英文名稱Uranus來自古希臘神話的天空之神烏拉諾斯(),是克洛諾斯的父親,宙斯的祖父。与在古代就为人们所知的五顆行星(水星、金星、火星、木星、土星)相比,天王星的亮度也是肉眼可見的,但由於較為黯淡以及緩慢的繞行速度而未被古代的觀測者认定为一颗行星。直到1781年3月13日,威廉·赫歇耳爵士宣布發現天王星,从而在太陽系的現代史上首度擴展了已知的界限。這也是第一顆使用望遠鏡發現的行星。天文學符號為、♅(♅,Unicode編碼U+2645) 天王星和海王星的內部和大氣構成不同於更巨大的氣體巨星,木星和土星。同樣的,天文學家設立了不同的「冰巨行星」分類來安置她們。天王星大氣的主要成分是氫和氦,還包含較高比例的由水、氨、甲烷等結成的「冰」,與可以探测到的碳氫化合物。天王星是太陽系內大气层最冷的行星,最低溫度只有49K(−224℃)。其外部的大气层具有複杂的雲層結構,水在最低的雲層內,而甲烷組成最高處的雲層。相比较而言,天王星的内部则是由冰和岩石所构成。 如同其他的巨行星,天王星也有環系統、磁層和許多衛星。天王星的環系統在行星中非常獨特,因為它的自轉軸斜向一邊,幾乎就躺在公轉太陽的軌道平面上,因而南極和北極也躺在其他行星的赤道位置上。從地球看,天王星的環像是環繞著標靶的圓環,它的衛星則像環繞著鐘的指針(雖然在2007年與2008年該環看來近乎水平)。在1986年,來自太空探测器航海家2號的影像资料顯示天王星實際上是一顆平平無奇的行星,在其可見光的影像中沒有出现像在其他巨行星所擁有的雲彩或風暴。然而,近年內,隨著天王星接近晝夜平分點,地球上的觀測者发现天王星有季節變化的迹象和漸增的天氣活動。天王星上的風速可以達到每秒250公尺。 在西方文化中,天王星是太陽系中唯一以希臘神祇命名的行星,其他行星都依照羅馬神祇命名。.

新!!: 镎和天王星 · 查看更多 »

中子

| magnetic_moment.

新!!: 镎和中子 · 查看更多 »

中子俘获

中子俘获是一种原子核与一个或者多个中子撞击,形成重核的核反应。由于中子不带电荷,它们能够比带一个正电荷的质子更加容易地进入原子核。 在宇宙形成过程中,中子俘获在一些质量数较大元素的核合成过程中起到了重要的作用。中子俘获在恒星里以快(R-过程)、慢(S-过程)两种形式发生。质量数大于56的核素不能够通过热核反应(即核聚变)产生,但是可以通过中子俘获产生。.

新!!: 镎和中子俘获 · 查看更多 »

乏核燃料

乏核燃料是经受过辐射照射、使用過的核燃料,通常是由核电站的核反应堆产生。这种燃料无法繼續维持核反应。乏核燃料中仍然包含有大量的放射性元素,因此具有放射性,如果不加以妥善处理,会严重影响环境与接触它们的人的健康。.

新!!: 镎和乏核燃料 · 查看更多 »

弱相互作用

弱相互作用(又稱弱力或弱核力)是自然的四種基本力中的一種,其餘三種為強核力、电磁力及万有引力。次原子粒子的放射性衰變就是由它引起的,恆星中一種叫氫聚變的過程也是由它啟動的。弱相互作用會影響所有費米子,即所有自旋為半奇數的粒子。 在粒子物理學的標準模型中,弱相互作用的理論指出,它是由W及Z玻色子的交換(即發射及吸收)所引起的,由於弱力是由玻色子的發射(或吸收)所造成的,所以它是一種非接觸力。這種發射中最有名的是β衰變,它是放射性的一種表現。重的粒子性質不穩定,由於Z及W玻色子比質子或中子重得多,所以弱相互作用的作用距離非常短。這種相互作用叫做“弱”,是因為β衰變發生的機率比強交互作用低很多,表示它的一般強度比電磁及強核力弱好幾個數量級。大部份粒子在一段時間後,都會通過弱相互作用衰變。弱相互作用有一種獨一無二的特性——那就是夸克味變——其他相互作用做不到這一點。另外,它還會破壞宇稱對稱及CP對稱。夸克的味變使得夸克能夠在六種“味”之間互換。 弱力最早的描述是在1930年代,是四費米子接觸相互作用的費米理論:接觸指的是沒有作用距離(即完全靠物理接觸)。但是現在最好是用有作用距離的場來描述它,儘管那個距離很短。在1968年,電磁與弱相互作用統一了,它們是同一種力的兩個方面,現在叫電弱相互作用。 弱相互作用在粒子的β衰變中最為明顯,在由氫生產重氫和氦的過程中(恆星熱核反應的能量來源)也很明顯。放射性碳定年法用的就是這樣的衰變,此時碳-14通過弱相互作用衰變成氮-14。它也可以造出輻射冷光,常見於超重氫照明;也造就了β伏這一應用領域(把β射線的電子當電流用)。.

新!!: 镎和弱相互作用 · 查看更多 »

微克

微克,质量单位,符号μg或者mcg( → microgramme, )。 1微克等于一百万分之一克(10-6克) 1 微克.

新!!: 镎和微克 · 查看更多 »

德米特里·伊万诺维奇·门捷列夫

德米特里·伊萬諾維奇·門捷列夫(ˈdmʲitrʲɪj ɪˈvanəvʲɪtɕ mʲɪndʲɪˈlʲejɪf ,),19世纪俄国科學家,發現化學元素的週期性,依照原子量,製作出世界上第一張元素週期表,并据以预见了一些尚未发现的元素。.

新!!: 镎和德米特里·伊万诺维奇·门捷列夫 · 查看更多 »

快中子增殖反应堆

快中子增殖反應堆(Fast breeder reactor),或稱快中子滋生反應堆、快滋生反應堆、快堆等,是一種核子反應器,核燃料和一顆快中子在核分裂後產生更多的中子,且利用增殖性材料吸收快中子後形成可裂变物质,產生的燃料多於消耗的燃料。另外也有利用熱中子進行滋生反應的「熱滋生反應器」。.

新!!: 镎和快中子增殖反应堆 · 查看更多 »

地球的年齡

代的地質學和地球物理學大致上都認為地球的年齡大約在45.4億年年齡的測量是對隕石採用放射測年進行。這與地球上的最古老的石頭和月岩的結果一致。 除此之外,也有測量是運用地球內的放射性元素和它蛻變生成的同位素,大致結果相同。.

新!!: 镎和地球的年齡 · 查看更多 »

化學元素

化學元素指自然界中一百多种基本的金属和非金属物质,同一種化學元素是由相同的原子組成,也就是其原子中的每一核子具有同样数量的質子,用一般的化学方法不能使之分解,并且能构成一切物质。一些常見元素的例子有氫、氮和碳。 原子序數大於82的元素(即鉛之後的元素)沒有穩定的同位素,會進行放射衰變。另外,第43和第61種元素(即锝和鉕)沒有穩定的同位素,會進行衰變。可是,即使是原子序數大於94,沒有穩定原子核的元素,有些仍可能存在在自然界中,如鈾、釷、钚等天然放射性核素。 所有化學物質都包含元素,即任何物質都包含元素,隨著人工的核反應,會發現更多的新元素。 1923年,国际原子量委员会作出决定:化学元素是根据原子核电荷的多少对原子进行分类的一种方法,把核电荷数相同的一类原子称为一种元素。 2012年,總共有118種元素被發現,其中地球上有94種。.

新!!: 镎和化學元素 · 查看更多 »

化學元素發現年表

化学元素發现年表将各种化学元素的发现按时间顺序列出。其中--发现的时间以提炼出元素单质的时间为准,因为元素化合物的发现时间无法准确定义。表中列出了每种元素的名称、原子序数、发现时间、发现者姓名和发现方式的简介。.

新!!: 镎和化學元素發現年表 · 查看更多 »

兩性 (化學)

在化學,兩性的物質是指既可跟酸反應,又能跟鹼反應的物质。例子有氨基酸、蛋白質、水及許多金屬如鉻、鋅、錫、鋁、鎵、鉛和鈹。.

新!!: 镎和兩性 (化學) · 查看更多 »

六氟化鈾

六氟化鈾(uranium hexafluoride)是一种铀的化合物,其化学式为。六氟化铀被用于制取浓缩铀,因此在核工业中有很重要的价值。标准状况下,六氟化铀为灰色的晶体。六氟化铀有很强的毒性,可与水剧烈反应,并且能腐蚀大多数金属。它與鋁反應溫和,在鋁的表面形成致密的氟化铝薄膜,阻止反應進一步進行。.

新!!: 镎和六氟化鈾 · 查看更多 »

四方晶系

四方晶系,也叫正方晶系,它具有一个4次对称轴,该轴是晶体的直立对称轴C轴,另外两个水平对称轴和C轴相互垂直相交。轴角α.

新!!: 镎和四方晶系 · 查看更多 »

在各种酸碱理论中,碱都是指与酸相对的一类物质。鹼多指鹼金屬及鹼土金屬的氢氧化物,而对碱最常见的定义是根据阿伦尼乌斯(Arrhenius)提出的酸碱离子理论作出的定义:碱是一种在水溶液中可以电离出氢氧根离子并且不产生其它阴离子的化合物。随后这个定义被扩展为提供氢氧根或者吸收氢离子的化合物。 根据不同的酸碱理论,碱有着不同的定义。.

新!!: 镎和碱 · 查看更多 »

立方晶系

立方晶系,也叫等轴晶系,它有4个三重对称轴以及3个互相垂直的4次对称轴或者3个相互垂直的二重对称轴。其中的3个互相垂直的4次对称轴或者3个相互垂直的二重对称轴是晶体结晶轴。轴角α.

新!!: 镎和立方晶系 · 查看更多 »

美國能源部

美國能源部(United States Department of Energy)主要負責美國聯邦政府能源政策制定,能源行業管理,能源相關技術研發、武器研製等。.

新!!: 镎和美國能源部 · 查看更多 »

羅馬尼亞

罗马尼亞(România),位於東歐洲。羅馬尼亞國境西方分別為匈牙利與塞爾維亞接壤,保加利亞在南,北邊與东北則是乌克兰與摩尔多瓦共和國。羅馬尼亞有一小段位於黑海邊的海岸線,多瑙河幾乎佔了南邊與保加利亞之間的國界大半,並且從該國东邊海岸流入黑海的西岸。 羅馬尼亞的首都為布加勒斯特,位於該國南部多瑙河支流登博维察河所流經的平原地帶上,是羅馬尼亞第一大城與工商業城市。值得提到的是,羅馬尼亞的女子組體操曾经相當強,與美國、俄羅斯、中國並駕齊驅,到目前為止獲得過70個世界冠軍。.

新!!: 镎和羅馬尼亞 · 查看更多 »

瀝青鈾礦

沥青铀矿是一种放射性的,富含铀的矿石,主要成分为二氧化铀,同时亦包含三氧化铀、铅、钍和稀土元素。其发现历史可以追溯到至少十五世纪德国厄尔士山脉的银矿开采过程中。书面记录来却是源自F.E.Brückmann在1727年对捷克共和国Jáchymov地区的矿物记录。 铀元素于1789年被德国化学家马丁·克拉普罗特(Martin Heinrich Klaproth)在Johanngeorgenstadt矿脉首先发现。 所有的沥青铀矿中均含有少量铀的放射性衰变产物镭。同时也含有少量铅的同位素Pb-206和Pb-207,U-235和U-238的衰变产物。作为α衰变的产物,沥青铀矿中还存在少量的氦。这也是氦在太阳光谱中被发现后第一次在地球沥青铀矿中被发现。沥青铀矿中还能找到极少量的锝(大约0.2ng/kg),由U-238裂变产生。 沥青铀矿是铀的主要矿藏来源。目前地球上所发现的已知含铀量最高的矿床分别在刚果民主共和国的Shinkolobwe(曼哈顿计划的最初矿源),加拿大萨斯喀彻温省北部的阿萨巴斯卡盆地。另一个沥青铀矿的主要产地在加拿大西北地区的大熊湖,与银矿同存。 铀通常被加工成黄饼,铀处理过程中的一个中间步骤。 铀礦中也可能包含極少量的-zh-hans:钫;zh-hant:鍅-(每公斤約數萬到數十萬原子)。.

新!!: 镎和瀝青鈾礦 · 查看更多 »

菲力普·艾貝爾森

菲力普·艾貝爾森(Philip Abelson,),美国物理學家。.

新!!: 镎和菲力普·艾貝爾森 · 查看更多 »

順磁性

順磁性(Paramagnetism)指的是一種材料的磁性狀態。有些材料可以受到外部磁场的影响,产生跟外部磁場同樣方向的磁化向量的特性。这样的物质具有正的磁化率。与順磁性相反的现象被称为抗磁性。.

新!!: 镎和順磁性 · 查看更多 »

衰變鏈

核科學裡,衰變鏈指的是放射性衰變過程中成鏈產生的一系列衰變產物。大部分放射性元素並不直接衰變成穩定的狀態,而是經過一連串的衰變反應,最終達至穩定的同位素為止。 衰變階段的名稱取決於它與前後階段的關係。“母同位素”衰變後產生“子同位素”。子同位素有可能是穩定的,但也可以繼續衰變形成下一個子同位素。子同位素的子同位素稱為第二代子同位素。 單獨一個母原子衰變成一個子原子的時間不定,不但在不同的母子原子對中有所不同,而且在同一種母子衰變反應中也有差異。單個原子的衰變是瞬時發生的,但是最初一堆原子在經過時間t後的衰變則由指數分布e−λt表示,當中的λ稱為衰變常數。正因為衰變的指數特徵,因此每一種同位素都有其半衰期。起初一定數量的相同放射性同位素在經過半衰期後,其中的一半會衰變成子同位素。實驗已經測定了數千種放射性同位素(或放射性核素)的半衰期,從幾乎馬上衰變到1019年以上不等。 中間的衰變階段往往比最初放射性同位素的衰變具有更強的放射性。當達至平衡之後,第二代子同位素的量與其半衰期成正比。不過由於其活躍性與半衰期成反比,任何在衰變鏈中的核素最終都會達到母同位素的放射水平。例如,自然鈾的放射性並不特別高,但是瀝青鈾礦的放射性卻是它的13倍,因為礦中還包含鐳和其他子同位素。除了鐳明顯較高的放射性之外,衰變鏈中的下一步會產生氡。氡是一種放射性的重惰性氣體,會囤積在含有釷或鈾的岩石附近的空隙裡,如地下室和礦井裡。長期接觸氡氣是導致非吸煙者患上肺癌的最主要原因。.

新!!: 镎和衰變鏈 · 查看更多 »

骨骼

是組成脊椎動物內骨骼的堅硬器官,功能是運動、支持和保護身體,及儲藏礦物質。骨組織是一種密實的結締組織。骨骼由各種不同的形狀組成,有複雜的內在和外在結構,使骨骼在減輕重量的同時能夠保持堅硬。骨骼的成分之一是礦物質化的骨骼組織,其內部是堅硬的蜂巢狀立體結構;其他組織還包括了骨髓、骨膜、神經、血管和軟骨。 人體的骨骼具有支撑身体的作用,其中的硬骨組織和軟骨組織皆是人體結締組織的一部分(而硬骨是結締組織中唯一細胞間質較為堅硬的)。成人有206塊骨頭,而新生儿的有超過270塊。由於諸如頭骨會隨年紀增長而癒合,因此成人骨骼個數少一兩塊或多一兩塊都是正常的。另外,成人有28~32個牙恆齒,多的一般稱為智齒,小孩乳齒20顆。骨与骨之間的間隙一般稱之為關節,除了少部分的不動關節可能以軟骨連接之外,大部分是以韌带连接起來的。關節可分成不動關節、可動關節以及難以被歸類的中間型可稱為少動關節。光有骨骼是不具有讓身體運動的作用的,一般俗稱的運動系統(這種分類其實是不嚴謹的,因為通常骨骼已經可以被稱做骨骼系統,包含軟骨硬骨以及連結骨與骨的韌帶甚至包含關節部分(關節液,因為關節是位置不是細胞更不是組織)。所謂的運動系統,應該是被譯作「超系統」的super system之一,人體一般分為六種super system)還包含了肌肉(骨骼肌)系統。骨骼肌是橫紋肌,可隨意志伸縮,一般一種「動作」是由一對肌肉對兩塊骨頭(一個關節)作拮抗,而肌肉末端以肌腱和經過關節的下一個骨頭連接。其實韌帶和肌腱也是結締組織,所以運動(超)系統中只有肌肉組織跟結締組織,頂多再包含骨髓內的神經及控制肌肉的運動神經屬於神經組織。.

新!!: 镎和骨骼 · 查看更多 »

質子

|magnetic_moment.

新!!: 镎和質子 · 查看更多 »

超铀元素

超铀元素在化学上指的是原子序数在92(铀)以上的重元素。原子序数从1到92的元素中,除了锝,钷,砹,钫4种物质以外,都可以很容易在地球上大量检测到,而且比较稳定,有很长的半衰期,或者是铀的普遍衰变物。 序数92以上的元素都是首先以人工合成的办法发现的。僅有少數的元素在地球上被發現自然生成,例如钚、镎、鉲等,因为他们都有放射性,半衰期短。可以在富铀的矿石中检测到钚的痕迹,在核试验后也有少量生成。它们是铀矿石经过中子俘获紧接着两次β衰变而成的:(238U → 239U → 239Np → 239Pu)。 这些元素现在可以用核反应堆或者粒子加速器人工合成。这些元素的半衰期有随着序数的增加而有缩短的趋势,然而也有例外:例如𨧀和锔的一些同位素。格伦·西奥多·西博格预言了在这一系列元素中更多的反常元素,并且把它们归类于“稳定岛”,即质子或中子为幻数的原子核具有特别的稳定性。 超铀元素中未发现的元素以及发现但未命名的元素,使用IUPAC元素系统命名法。超铀元素的命名曾引起很大的争论,104到109号元素命名的争论从二十世纪六十年代开始,一直到1997年才解决。.

新!!: 镎和超铀元素 · 查看更多 »

鈾(Uranium)是一種銀白色金屬化學元素,屬於元素週期表中的錒系,化學符號為U,原子序為92。每個鈾原子有92個質子和92個電子,其中6個為價電子。鈾具有微放射性,其同位素都不稳定,并以鈾-238(146個中子)和鈾-235(143個中子)最为常见。鈾在天然放射性核素中原子量第二高,仅次于钚。其密度比鉛高出大約70%,比金和鎢低。天然的泥土、岩石和水中含有百萬分之一至百萬分之十左右的鈾。採礦工業從瀝青鈾礦等礦物中提取出鈾元素。 自然界中的鈾以三种同位素的形式存在:鈾-238(99.2739至99.2752%)、鈾-235(0.7198至0.7202%)、和微量的鈾-234(0.0050至0.0059%)。鈾在衰變的時候釋放出α粒子。鈾-238的半衰期為44.7億年,鈾-235的則為7.04億年,因此它们被用于估算地球的年齡。 鈾獨特的核子特性有很大的實用價值。鈾-235是唯一自发裂變的同位素。鈾-238在快速中子撞擊下能夠裂變,屬於增殖性材料,即能在核反應爐中經核嬗變成為可裂變的鈈-239。鈾-233也是一種用於核科技的可裂變同位素,可從自然釷元素製成。鈾-238自發裂變的機率极低,快中子撞擊可诱导其裂變;鈾-235和233可被慢中子撞击而裂变,如果其质量超过临界质量,就都能夠維持核連鎖反應,在核反应过程中的微小质量损失会转化成巨大的能量。这一特性使它们可用于生产核裂变武器与核能发电。耗尽后的鈾-235发电原料被称为貧鈾(含238U),可用做钢材添加剂,製造贫铀弹和裝甲。.

新!!: 镎和鈾 · 查看更多 »

鈾-235

鈾235(符号:235U),是鈾的三種同位素之一,當中只有鈾235能夠發生核分裂,引發連鎖核裂變反應,可用作核電及核彈。1935年由加拿大科學家發現。根據國際原子能機構的定義,濃度為3%的鈾235為核電廠發電用低濃縮鈾,高於80%稱作高濃縮鈾,大於90%則叫作為武器級高濃縮鈾。.

新!!: 镎和鈾-235 · 查看更多 »

鈾-238

鈾238(符号:238U)是鈾在自然界中最常見的同位素,放射性強度遠低於鈾-235,因此鈾238並不是可裂變物質。但是它可以藉由捕捉慢中子並經過兩次貝塔衰變變成可分裂的。被快中子碰撞後會吸收其能量,使得快中子不能進一連鎖反應。 大約99.284%的天然鈾是鈾238,半衰期為4.468 × 109年,在原子核大於84的放射性元素中,其半衰期特別的長,顯示其擁有特別穩定的原子核。 Category:鈾的同位素.

新!!: 镎和鈾-238 · 查看更多 »

開氏度

#重定向 开尔文.

新!!: 镎和開氏度 · 查看更多 »

鈽(Plutonium,--)是原子序数94、元素符號為Pu的放射性超鈾元素。它屬於錒系金屬,外表呈銀白色,接觸空氣後容易腐蝕、氧化,在表面生成無光澤的二氧化鈽。鈽有六种同素異形體和四種氧化態,易和碳、鹵素、氮、矽起化學反應。鈽暴露在潮濕的空氣中時會產生氧化物和氫化物,其體積最大可膨脹70%,屑狀的钚能自燃。它也是一种放射性毒物,会於骨髓中富集。因此,操作、處理鈽元素具有一定的危險性。 鈽是天然存在於自然界中質量最重的原子。它最穩定的同位素是鈽-244,半衰期約為八千萬年,足夠使鈽以微量存在於自然環境中。 鈽最重要的同位素是鈽-239,半衰期為2.41萬年,常被用來製造核子武器。鈽-239和鈽-241都易于裂變,即它們的原子核可以在慢速熱中子撞擊下產生核分裂,釋出能量、伽馬射線以及中子輻射,從而形成核連鎖反應,並應用在核武器與核反應爐上。 鈽-238的半衰期為88年,並放出α粒子。它是放射性同位素熱電機的熱量來源,常用於驅動太空船。 鈽-240自發裂變的比率很高,容易造成中子通量激增,因而影響了鈽作為核武及反應器燃料的適用性。 分離鈽同位素的過程成本極高又耗時費力,因此鈽的特定同位素時幾乎都是以特殊反應合成。 1940年,格倫·西奧多·西博格和埃德溫·麥克米倫首度在柏克萊加州大學實驗室,以氘撞擊鈾-238而合成鈽元素。麥克米倫將這個新元素取名Pluto(意為冥王星),西博格便開玩笑提議定其元素符號為Pu(音類似英語中表嫌惡時的口語「pew」)。科學家隨後在自然界中發現了微量的鈽。二次大戰時曼哈頓計劃則首度將製造微量鈽元素列為主要任務之一,曼哈頓計劃後來成功研製出第一個原子彈。1945年7月的第一次核試驗「三一试验」,以及第二次、投於長崎市的「胖子原子彈」,都使用了鈽製作內核部分。關於鈽元素的人體輻射實驗研究並在未經受試者同意之下進行,二次大戰期間及戰後都有數次核試驗相關意外,其中有的甚至造成傷亡。核能發電廠核廢料的清除,以及冷戰期間所打造的核武建設在核武裁減後的廢用,都延伸出日後核武擴散以及環境等問題。非陸上核試驗也會釋出殘餘的原子塵,現已依《部分禁止核試驗條約》明令禁止。.

新!!: 镎和钚 · 查看更多 »

钡(Barium)是化学元素周期表中的元素,它的原子序数是56,化学符号是Ba。它是周期表中2A族的第五个元素,是一种柔软的有银白色金属光泽的碱土金属。由于它的化学性质十分活泼,从来没有在自然界中发现钡单质。 钡在自然界中最常见的矿物是重晶石(硫酸钡,BaSO4)和毒重石(碳酸钡,BaCO3),二者皆不容于水。钡的名称源于希腊文单词βαρύς(barys),意为“重的”。它在1774年被确认为一个新元素,但直到1808年电解法发明不久后才被归纳为金属元素。 钡在工业上只有少量应用。过去曾用它作为真空管中的吸气剂。它是YBCO(一种高温超导体)和电瓷的成分之一,也可以被添加进钢中来减少金属构成中碳颗粒的数量。钡的化合物用于制造烟火中的绿色。硫酸钡作为一种不溶的重添加剂被加进钻井液中,而在医学上则作为一种X光造影剂。可溶性钡盐因为会电离出钡离子所以有毒,因此也被用做老鼠药。.

新!!: 镎和钡 · 查看更多 »

钨(IUPAC名:tungsten ),化学符号:W(Wolfram), 是一種化学元素,原子序数是74,是非常硬、钢灰色至白色的过渡金属。含有钨的矿物有黑钨矿和白钨矿等。钨的物理特征非常强,尤其是熔点非常高,是所有非合金金属中最高的。纯钨主要用在电器和电子设备,它的许多化合物和合金也有很多其它用途(最常见的有灯泡的鎢丝,在X射线管中以及高温合金)。 鎢的最穩定的三種同位素都有輕微的放射性。.

新!!: 镎和钨 · 查看更多 »

钷(Promethium)為一化学元素,化学符号為Pm,原子序61,属于镧系元素與稀土元素,它所有同位素皆帶有放射性,半衰期最长只有17.7年,故常以人工合成的方法制得。 在原子序82号(鉛)以前只有两个元素没有稳定的同位素,其中一个即為鉕,另一个是锝。在化學上,钷是一種鑭系元素,會與其他元素形成鹽類。钷會以+3氧化態形成穩定的鹽,但是也有少數化合物中存在+2的钷。 在1902年時,预测在當時已知的釹(60)和釤(62)之間存在一個與它們性質相似的未知元素。1914年,亨利·莫塞萊利用原子序與原子核電荷之間的關係(莫塞萊定律),確認當時還未知的61號元素確實存在。不過他測定當時所有已知元素的原子序,却發現沒有任何元素的原子序是61。 1926年,兩個義大利佛羅倫薩的化學家声称他們發現了第61號元素,將其命名為Florentium(中文譯作鉘);同年,一批美國伊利諾大學的化學家亦宣布61號元素的發現,將其命名為Illinium(中文譯作鉯),但這兩個發現都被證實是錯誤的。 1938年,俄亥俄州立大學在進行核試驗的過程中,產生了一些放射性元素,且已确定不是釹或釤的放射性同位素。但此發現因缺乏化學證據證明那是61號元素,所以并沒有得到普遍的認可。1945年,美國橡樹嶺國家實驗室利用離子交換層析法(IEC)分析石墨核子反應堆中的鈾(235U)衰變產物,才真正发现並確認钷的存在。發現者原本打算以研究機構的名稱將之命名為Clintonium(源自橡樹嶺國家實驗室的前身柯林頓實驗室),但之後提出的名稱為“Prometheum”(現改變為Promethium),來自普羅米修斯(祂在希臘神話中偷走了火,從奧林匹斯山帶给人類),以象徵“大膽”以及“人類才智的濫用”。第一件钷的金屬樣本於1963年被制造出來。 自然钷有兩個可能的來源:銪-151衰變(產生钷-147),和鈾(產生各種同位素)。實際應用方面,虽然钷-145是最穩定的钷同位素,但只有钷-147的化合物有实际运用,用於夜光漆,核電池和厚度測量裝置。钷在自然界非常稀有,製作钷常用的方法是用熱中子轟擊鈾-235(濃縮鈾)来產生钷-147。.

新!!: 镎和钷 · 查看更多 »

蒸汽

蒸汽(Steam)是將液態水加熱至沸騰後形成的氣態水。蒸汽是不可見的,而然日常可見的「蒸汽」是「溼蒸汽」(Wet steam),為水蒸氣與其冷凝而成的薄霧或氣膠的混合物。在低气压地区,例如高空,高山顶端,水的沸点要比我们日常所知的100摄氏度低。持续加热就会产生过热水蒸气。 蒸汽通常應用於物理化學和工業中,例如蒸汽发动机。.

新!!: 镎和蒸汽 · 查看更多 »

钒(Vanadium),元素符号V,化学元素之一,原子序数为23。钒音译自英语Vanadium,其词根源于日耳曼神话中古日耳曼语的女神名字。这名字源于钒有许多色彩鲜艳的化合物。 钒為有韌性及延展性之堅硬銀灰过渡金属,在自然界僅以化合態存在,一般用於材料工程作为合金成分。.

新!!: 镎和钒 · 查看更多 »

鉈(;thallium)是一種化學元素,符號為Tl,原子序為81。鉈是一種質軟的灰色貧金屬,在自然界中並不以單質存在。鉈金屬外表和錫相似,但會在空氣中失去光澤。兩位化學家威廉·克魯克斯和克洛德-奧古斯特·拉米在1861年獨立發現了這一元素。他們都是在硫酸反應殘留物中發現了鉈,並運用了當時新發明的火焰光譜法對其進行了鑑定,觀測到鉈會產生明顯的綠色譜線。其名稱「Thallium」由克魯克斯提出,來自希臘文中的「θαλλός」(thallos),即「綠芽」之意。翌年,拉米用電解法成功分離出鉈金屬。 鉈在氧化後,一般擁有+3或+1氧化態,形成離子鹽。其中+3態與同樣屬於硼族的硼、鋁、鎵和銦相似;但是鉈的+1態則比其他同族元素顯著得多,而且和鹼金屬的+1態相近。鉈(I)離子在自然界中大部份出現在含鉀礦石中。生物細胞的離子泵處理鉈(I)離子的方式也和鉀(I)類似。 在商業開採方面,鉈是硫化重金屬礦提煉過程的副產品之一。總產量的60至70%應用在電子工業,其餘則用於製藥工業和玻璃產業。鉈還被用在紅外線探測器中。放射性同位素鉈-201(以水溶氯化鉈的形態),在核醫學掃描中可用作示蹤劑,例如用於心臟負荷測試。 水溶鉈鹽大部份幾乎無味,且都是劇毒物,曾被用作殺鼠劑和殺蟲劑以及謀殺工具。這類化合物的使用已經被多國禁止或限制。鉈中毒會造成脫髮。.

新!!: 镎和铊 · 查看更多 »

锂(Lithium)是一种化学元素,其化学符号Li,原子序数为3,三个电子中两个分布在K层,另一个在L层。锂是碱金属中最轻的一种。锂常呈+1或0氧化态,是否有-1氧化态則尚未得到证实。但是锂和它的化合物并不像其他的碱金属那么典型,因为锂的电荷密度很大并且有稳定的氦型双电子层,使得锂容易极化其他的分子或离子,自己却不容易受到极化。这一点就影响到它和它的化合物的稳定性刘翊纶任德厚《无机化学丛书》第一卷 北京:科学出版社289-354页1984年。锂的英文名称来源于希腊文lithos,意为“石头”。其中文名则来源于“Lithos”的第一个音节发音“里”,因为是金属,在左方加上部首“钅”。.

新!!: 镎和锂 · 查看更多 »

锕系元素

锕系元素以第Ⅲ族副族元素锕为首的一系列元素,是原子序数第89元素锕到第103元素铹,共15种放射性元素,在周期表中占有一个特殊位置。 锕系元素的名稱是因為3族元素锕,有時也會符號An表示锕系元素。锕系元素絕大部份是f區元素,最高能量的電子是在5f電子層,锕系元素只有鐒是d區元素。鑭系元素中大部份也一様是f區元素,不過相較起來,锕系元素的化合價有較多的變化。 锕系元素原子基態的電子構型是5f0~146d0~17s2,这些元素的核外电子分为7层,最外层都是2个电子,次外层多数为8个电子(个别为9或10个电子),从镤到锘电子填入第5层,使第5层电子数从18个增加到32个。 1789年德国馬丁·克拉普羅特从沥青铀矿中发现了铀,它是被人们认识的第一个锕系元素。其后陆续发现了锕、钍和镤。铀以后的元素都是在1940年后用人工核反应合成的,稱為人工合成元素。.

新!!: 镎和锕系元素 · 查看更多 »

臨界質量

臨界質量(Critical mass)是指維持核子連鎖反應所需的裂變材料質量。不同的可裂變材料,受核子的性質(如裂變橫切面)、物理性質、物料型狀、純度、是否被中子反射物料包圍、是否有中子吸收物料等等因素影響,而會有不同的臨界質量。 剛好可以產生連鎖反應的組合,稱為已達臨界點。比這樣更多質量的組合,核反應的速率會以指數增長,稱為超臨界。如果組合能夠在沒有延遲放出中子之下進行連鎖反應,這種臨界被稱為即發臨界,是超臨界的一種。即發臨界組合會產生核爆炸。如果組合比臨界點小,裂變會隨時間減少,稱之為次臨界。 恩里科·費米最先發現超臨界組合,不一定同時是超過即發臨界。他的發現開展了受控制的連鎖反應的研究,後來發展的核子反應堆及核能都是出於這一發現。.

新!!: 镎和臨界質量 · 查看更多 »

金属

金属是一种具有光泽(对可见光强烈反射)、富有延展性、容易导电、传热等性质的物质。金属的上述特质都跟金属晶体内含有自由电子有关。由於金屬的電子傾向脫離,因此具有良好的導電性,且金属元素在化合物中通常帶正价電,但當溫度越高時,因為受到了原子核的熱震盪阻礙,電阻將會變大。金屬分子之間的連結是金屬鍵,因此隨意更換位置都可再重新建立連結,這也是金屬伸展性良好的原因之一。 在自然界中,絶大多數金屬以化合態存在,少數金屬例如金、銀、鉑、鉍可以游離態存在。金屬礦物多數是氧化物及硫化物。其他存在形式有氯化物、硫酸鹽、碳酸鹽及矽酸鹽。 屬於金屬的物質有金、銀、銅、鐵、鋁、錫、錳、鋅等。在一大氣壓及25攝氏度的常温下,只有汞不是固體(液態),其他金属都是固體。大部分的純金屬是銀色,只有少數不是,例如金為黄色,銅為暗紅色。 在一些個別的領域中,金屬的定義會有些不同。例如因為恆星的主要成份是氫和氦,天文學中,就把所有其他密度較高的元素都統稱為「金屬」。因此天文學和物理宇宙學中的金屬量是指其他元素的總含量。此外,有許多一般不會分類為金屬的元素或化合物,在高壓下會有類似金屬的特質,稱為「金屬性的同素異形體」。.

新!!: 镎和金属 · 查看更多 »

鋂(Americium,--)是一種放射性超鈾元素,符號為Am,原子序為95。鋂屬於錒系元素,在元素週期表中位於鑭系元素銪之下。鋂是以發現所在的美洲大陸(America)命名的。 位於伯克利加州大學由格倫·西奧多·西博格領導的團隊在1944年首次合成了鋂元素。雖然鋂是第三個超鈾元素,但它卻是繼鋦以後第四個被發現的超鈾元素。這項發現最初被列爲機密,直到1945年才公諸於世。大部分的鋂都是在核反應爐中以中子撞擊鈾或鈈而形成的:一噸乏核燃料含有大約100克鋂。鋂元素主要用在商業電離煙霧探測器和儀表中,或用作中子源。有人提出用242mAm同位素製造核電池和太空船的核推進燃料,但因該同核異構體的稀少和昂貴而尚待實現。 鋂是一種質軟的放射性金屬,外表呈銀白色。鋂的同位素中最常見的有241Am和243Am。在化合物中,特別是溶液中,鋂的氧化態通常是+3。鋂還有+2到+7之間的其他氧化態,可通過測量吸收光譜分辨出來。由於輻射變晶效應,鋂固體和鋂化合物的晶體結構本身含有缺陷。這些缺陷隨時間而增加,因此其物質屬性會進行變化。.

新!!: 镎和镅 · 查看更多 »

酸(有时用“HA”表示)的传统定义是当溶解在水中时,溶液中氢离子的浓度大于纯水中氢离子浓度的化合物。换句话说,酸性溶液的pH值小于水的pH值(25℃时为水的pH值是7)。酸一般呈酸味,但是品尝酸(尤其是高浓度的酸)是非常危险的。酸可以和碱发生中和作用,生成水和盐。酸可分为无机酸和有机酸两种。.

新!!: 镎和酸 · 查看更多 »

鉛的同位素

鉛(原子量:207.2(1))的同位素.

新!!: 镎和鉛的同位素 · 查看更多 »

鋂-241

#重定向 镅 Category:鋂的同位素.

新!!: 镎和鋂-241 · 查看更多 »

核反应堆

核反应堆(nuclear reactor)是一种启动、控制并维持核裂变或核聚變链式反应的装置。相对于核武爆炸瞬间所发生的失控链式反应,在反应堆之中,核变的速率可以得到精确的控制,其能量能够以较慢的速度向外释放,供人们利用。 核反应堆有许多用途,当前最重要的用途是产生热能,用以代替其他燃料加热水,产生蒸汽发电或驱动航空母舰等设施运转。一些反应堆被用来生产为医疗和工业用途的同位素,或用于生产武器级钚。一些反应堆运行仅用于研究。当前全部商业核反应堆都是基于核裂变的。今天,在世界各地的大约30个国家里有被用于发电的大约450个核反应堆。.

新!!: 镎和核反应堆 · 查看更多 »

核裂变

核裂变(;),--,是指由較重的(原子序数較大的)原子,主要是指鈾或鈽,分裂成较輕的(原子序数较小的)原子的一種核反應或放射性衰變形式。核裂变是由莉澤·邁特納、奥托·哈恩及奥托·罗伯特·弗里施等科學家在1938年發現。原子彈以及核电站的能量来源都是核裂变。早期原子彈應用鈽-239為原料製成。而鈾-235裂變在核電廠最常見。 重核原子經中子撞擊後,分裂成為兩個較輕的原子,同時釋放出數個中子,並且以伽马射线的方式釋放光子。釋放出的中子再去撞擊其它的重核原子,從而形成鏈式反應而自發分裂。原子核分裂時除放出中子還會放出熱,核電廠用以發電的能量即來源於此。因此核裂变產物的結合能需大於反應物的的結合能。 核裂变會將化學元素變成另一種化學元素,因此核裂变也是核遷變的一種。所形成的二個原子質量會有些差異,以常見的可裂变物质同位素而言,形成二個原子的質量比約為3:2。大部份的核裂变會形成二個原子,偶爾會有形成三個原子的核裂变,稱為,大約每一千次會出現二至四次,其中形成的最小產物大小介於質子和氬原子核之間。 現代的核裂变多半是刻意產生,由中子撞擊引發的人造核反應,偶爾會有自發性的,因放射性衰變產生的核裂变,後者不需要中子的引發,特別會出現在一些質量數非常高的同位素,其產物的組成有相當的機率性甚至混沌性,和质子发射、α衰變、等單純由量子穿隧產生的裂变不同,後面這些裂变每次都會產生相同的產物。原子彈以及核电站的能量来源都是核裂变。核燃料是指一物質當中子撞擊引發核裂变時也會釋放中子,因此可以產生鏈式反應,使核裂变持續進行。在核电站中,其能量產生速率控制在一個較小的速率,而在原子彈中能量以非常快速不受控制的方式釋放。 由於每次核分裂釋放出的中子數量大於一個,因此若對鏈式反應不加以控制,同時發生的核分裂數目將在極短時間內以幾何級数形式增長。若聚集在一起的重核原子足夠多,將會瞬間釋放大量的能量。原子彈便應用了核分裂的這種特性。製成原子彈所使用的重核含量,需要在90%以上。 核能發電應用中所使用的核燃料,鈾-235的含量通常很低,大約在3%到5%,因此不會產生核爆。但核電廠仍需要對反應爐中的中子數量加以控制,以防止功率過高造成爐心熔毀的事故。通常會在反應爐的慢化劑中添加硼,並使用控制棒吸收燃料棒中的中子以控制核分裂速度。從鎘以後的所有元素都能分裂。 核分裂時,大部分的分裂中子均是一分裂就立即釋出,稱為瞬發中子,少部分則在之後(一至數十秒)才釋出,稱為延遲中子。.

新!!: 镎和核裂变 · 查看更多 »

核武器

--,也叫--或原子武器,簡稱核武,是利用核反应的光热辐射、電磁脈衝、冲击波和感生放射性造成杀伤和破坏作用,以及造成大面积放射性污染,来阻止对方军事行动以达到战略目的的大杀伤力武器。主要包括核分裂武器(第一代核武,通常稱為原子弹)和核融合武器(亦稱為氫彈,分为两級及三級式)。亦有些还在武器内部放入具有感生放射的轻元素,以增大辐射强度扩大污染,或加強中子放射以殺傷人員(如中子弹)。 除此以外,核武器還可以根據用途而細分為戰略核武器及戰術核武器,前者是一般意義上的核武器範疇,為大當量的核武器和遠射程,後者則屬於小當量和近射程。其中,後者可用於戰爭前線。戰術核武器的概念以及發展相對戰略核武器為遲緩,是在第二次世界大战以後多年才逐步形成的,而戰術核武器需要對核能技術的要求亦較高以及複雜,其前提是要擁有戰略核武器。 有紀錄的核武器的研發始於第二次世界大戰前夕,由納粹德國率先提出方案,美國方面的計畫則晚了數個月。但由於當時錯誤的實驗方向與發展,令希特勒認為開發核武器的費用將會過於龐大,加上原先德國有興趣的是核子反應所能提供的能源而並非核武,因此放棄開發核武器。 當1945年納粹德國投降後,大量的德國科學家分散至各國持續研究,進一步幫助了西方國家與蘇聯在核能方面的技術發展。.

新!!: 镎和核武器 · 查看更多 »

正交晶系

正交晶系,也叫斜方晶系。 该晶系特点是没有高次对称轴,二次对称轴和对称面总和不少于三个。晶体以这三个互相垂直的二次轴或对称面法线为结晶轴。α.

新!!: 镎和正交晶系 · 查看更多 »

氡是化學元素,符號為Rn,原子序為86,屬於稀有氣體,無色、無臭、無味,具放射性,是鐳自然衰變後的間接產物,最穩定同位素為222Rn,半衰期為3.8天。在常規條件下,氡是密度最高的氣體物質之一。它同時也是唯一一種常規條件下只含放射性同位素的氣體,其輻射可以對健康造成損害。由於其放射性很強,所以針對氡的化學研究較為困難,已知化合物也很少。 釷和鈾在地球形成時已經存在。在它們緩慢衰變為鉛的過程中,氡會作為衰變鏈的一部份自然產生。釷和鈾的自然同位素半衰期都長達數十億年,因此這兩種元素連同鐳、氡等衰變產物,在今後幾千萬年後的豐度仍將和今天的程度相近。, Agency for Toxic Substances and Disease Registry, U.S. Public Health Service, In collaboration with U.S. Environmental Protection Agency, December 1990.

新!!: 镎和氡 · 查看更多 »

氧(IUPAC名:Oxygen)是一種化學元素,符號為O,原子序為8,在元素週期表中屬於氧族。氧屬於非金屬,是具有高反應性的氧化劑,能夠與大部分元素以及其他化合物形成氧化物。氧在宇宙中的總質量在所有元素中位列第三,僅居氫和氦之下。Emsley 2001, p.297在標準溫度和壓力下,兩個氧原子会自然鍵合,形成無色無味的氧氣,即雙原子氧()。氧氣是地球大氣層的主要成分之一,在體積上佔20.8%。地球地殼中近一半的質量都是由氧和氧化物所組成。 氧是細胞呼吸作用中重要的元素。在生物體中,主要有機分子,如蛋白質、核酸、碳水化合物和脂肪等,還有組成動物外殼、牙齒和骨骼的無機化合物,都含有氧原子。生物體絕大部分的質量都由含氧原子的水組成。光合作用利用陽光的能量把水和二氧化碳轉化為氧氣。氧氣的化學反應性強,容易與其他元素結合,所以大氣層中的氧氣成分只能通過生物的光合作用持續補充。臭氧()是氧元素的另一種同素異構體,能夠較好地吸收中紫外線輻射。位於高海拔的臭氧層有助阻擋紫外線,從而保護生物圈。不過,在地表上的臭氧屬於污染物,為霧霾的副產品之一。在低地球軌道高度的單原子氧足以對航天器造成腐蝕。 卡爾·威廉·舍勒於1773年或之前在烏普薩拉最早發現氧元素。約瑟夫·普利斯特里亦於1774年在威爾特郡獨立發現氧,因為其成果的發表日期較舍勒早,所以一般被譽為氧的發現者。1777年,安東萬-羅倫·德·拉瓦節進行了一系列有關氧的實驗,推翻了當時用於解釋燃燒和腐蝕的燃素說。他也提出了氧的現用IUPAC名稱「oxygen」,源自希臘語中的「ὀξύς」(oxys,尖銳,指酸)和「-γενής」(-genes,產生者)。這是因為命名之時,人們曾以為所有酸都必須含有氧。許多化學詞彙都在清末傳入中國,其中原法文元素名「oxygène」被譯為「養」,後譯為「氱」,最終演變為今天的中文名「氧」。 氧的應用包括暖氣、內燃機、鋼鐵、塑料和布料的生產、金屬氣焊和氣割、火箭推進劑、及航空器、潛艇、載人航天器和潛水所用的生命保障系統。.

新!!: 镎和氧 · 查看更多 »

氧化物

氧化物,是负价氧和另外一个化學元素組成的二元化合物,例如氧化鐵(Fe2O3)或氧化鋁(Al2O3),通常經由氧化反應產生。氧化物在地球的地殻極度普遍,而在宇宙的固體中也是如此。 氧离子(O2−)是氢氧根(OH−)离子的共轭碱,存在某些氧化物离子晶体中。自由的氧离子具强碱性(pKb ~ -22),在水溶液中是不稳定的。 氧化物中的氧元素应该呈负氧化态。如果含氧二元化合物中的氧为正氧化态,例如二氟化二氧(O2F2)和二氟化氧(OF2),则它们一般称为氟化物,而非氧化物。.

新!!: 镎和氧化物 · 查看更多 »

法国

法兰西共和国(République française ),簡稱法国(France ),是本土位於西歐並具有海外大區及領地的主權國家,自法蘭西第五共和國建立以來实行单一制與半总统制,首都為歐盟最大跟歐洲最大的文化與金融中心巴黎。該國本土由地中海一直延伸至英倫海峽及北海,並由萊茵河一直延伸至大西洋,整體呈六角狀。海外领土包括南美洲的法属圭亚那及分布于大西洋、太平洋和印度洋的诸岛屿。全国共分为18个大区,其中5个位于海外。法国與西班牙及摩洛哥為同時擁有地中海及大西洋海岸線的三個國家。法國的国土面积全球第四十一位,但卻為歐盟及西歐國土面積最遼闊的國家,歐洲面積第三大國家。 今日之法国本土于铁器时代由高卢人(凯尔特人的一支)征服,前51年又由罗马帝国吞并。486年法兰克人(日耳曼人的一支)又征服此地,其于该地域建立的早期国家最终发展成为法兰西王国。法国至中世纪末期起成为欧洲大国,國力於19-20世紀時達致巔峰,建立了世界第二大殖民帝國,亦為20世紀人口最稠密的國家,現今則是众多前殖民地的首選移民国。在漫長的歷史中,法國培養了不少對人類發展影響深遠的著名哲學家、文學家與科學家,亦為文化大国,具有第四多的世界遺產。 法國在全球範圍內政治、外交、軍事與經濟上為舉足輕重的大國之一。法國自1958年建立第五共和国後經濟有了很大的發展,政局保持穩定,國家體制實行半總統制,國家經由普選產生的總統、由其委任的總理與相關內閣共同執政。1958年10月4日,由公投通過的國家憲法則保障了國民的民主權及宗教自由。法國的建國理念主要建基於在18世紀法國大革命中所制定的《人權和公民權宣言》,此乃人類史上較早的人權文檔,並對推動歐洲以至於全球的民主與自由產生莫大的影響;其藍白紅三色的國旗則有「革命」的含義。法國不僅為聯合國常任理事國,亦是歐盟始創國。該國國防預算金額為全球第5至6位,並擁有世界第三大核武貯備量。法國為发达国家,其GDP為全球第六大經濟體系,具備世界第十大購買力,並擁有全球第二大專屬經濟區;若以家庭總財富作計算,該國是歐洲最富有的國家,位列全球第四。法國國民享有高生活質素,在教育、預期壽命、民主自由、人類發展等各方面均有出色的表現,特別是醫療研發與應用水平長期盤據世界首位。其國內許多軍備外銷至世界各地。目前,法国是。.

新!!: 镎和法国 · 查看更多 »

洛斯阿拉莫斯国家实验室

洛斯阿拉莫斯國家實驗室(Los Alamos National Laboratory,LANL;前稱Y計劃、洛斯阿拉莫斯實驗室和洛斯阿拉莫斯科學實驗室)是美國承擔核子武器設計工作的兩個實驗室之一。另一個是勞倫斯利弗莫爾國家實驗室(始於1952年)。該國家實驗室位於新墨西哥州洛斯阿拉莫斯,隸屬美國能源部,管理和運行則歸洛斯阿拉莫斯國家安全會(LANS)負責。洛斯阿拉莫斯國家實驗室是世界上最大的科學和技術研究機構之一,它在國家安全、太空探索、 可再生能源、醫藥、納米技術和超級計算機等多個學科領域開展研究。 洛斯阿拉莫斯國家實驗室是新墨西哥州北部最大的研究機構和最大的雇主,擁有大約9,000名的直接僱員和774人左右的合同雇員。此外還有大約120名的美國能源部員工駐紮在實驗室,負責監督那裡的工作和運行情況。實驗室約三分之一的技術人員是物理學家,四分之一是工程師,六分之一為化學家和材料科學家,其餘的則在數學和計算科學、生物學、地球科學等其他學科的工作。外部的科學家和學生也會訪問洛斯阿拉莫斯國家實驗室參與科研項目。實驗室聯合大學和業界進行能源方面的基礎和應用研究。洛斯阿拉莫斯國家實驗室2016年的預算約為22億美元。.

新!!: 镎和洛斯阿拉莫斯国家实验室 · 查看更多 »

濃縮鈾

浓缩铀(Enriched Uranium),指经过同位素分离处理后,铀235含量超过天然含量的铀金属,与其相对的是贫化铀。.

新!!: 镎和濃縮鈾 · 查看更多 »

海王星

海王星是太陽系八大行星中距离太阳最远的,體積是太陽系第四大,但質量排名是第三。海王星的質量大約是地球的17倍,而類似雙胞胎的天王星因密度較低,質量大約是地球的14倍。海王星以羅馬神話中的尼普顿(Neptunus)命名,因為尼普顿是海神,所以中文譯為海王星。天文學的符號(♆,Unicode編碼U+2646),是希臘神話的海神波塞頓使用的三叉戟。 作爲一個冰巨行星,海王星的大氣層以氫和氦為主,還有微量的甲烷。在大氣層中的甲烷,只是使行星呈現藍色的一部分原因。因為海王星的藍色比有同樣份量的天王星更為鮮豔,因此應該還有其他成分對海王星明顯的顏色有所貢獻。 海王星有太陽系最強烈的風,測量到的風速高達每小時2,100公里。 1989年航海家2號飛掠過海王星,對南半球的大黑斑和木星的大紅斑做了比較。海王星雲頂的溫度是-218 °C(55K),因為距離太陽最遠,是太陽系最冷的地區之一。海王星核心的溫度約為7,000 °C,可以和太陽的表面比較,也和大多數已知的行星相似。 海王星在1846年9月23日被發現, 是唯一利用數學預測而非有計畫的觀測發現的行星。天文學家利用天王星軌道的攝動推測出海王星的存在與可能的位置。迄今只有航海家2號曾經在1989年8月25日拜訪過海王星。2003年,美國國家航空暨太空總署提出有如卡西尼-惠更斯號科學水準的海王星軌道探測計畫,但不使用熱滋生反應提供電力的推進裝置;這項計劃由噴射推進實驗室和加州理工學院一起完成。.

新!!: 镎和海王星 · 查看更多 »

摄氏温标

摄氏温标是世界上普遍使用的温标,符号为°C,属于公制单位。 摄氏温标的规定是:在标准大气压,纯水的凝固点(即固液共存的温度)為0°C,水的沸點為100°C,中間劃分為100等份,每等份為1°C。.

新!!: 镎和摄氏温标 · 查看更多 »

放射性

放射性或輻射性是指元素從不稳定的原子核自发地放出射线,(如α射线、β射线、γ射线等)而衰变形成穩定的元素而停止放射(衰变产物),這種現象稱為放射性。衰变时放出的能量称为衰变能量。原子序數在83(鉍)或以上的元素都具有放射性,但某些原子序數小于83的元素(如锝)也具有放射性。而有趣的是,從原子序84開始一直到鉳元素有以下特性:原子序是偶數的,半衰期都比相邻的长。这是由於原子序数为偶數的元素的原子核含有適當數量的質子和中子,能够形成有利的配置結構。〈即魔數〉 對單一原子來說,放射性衰变依照量子力學是隨機過程,無法預測特定一個原子是否會衰变。不過原子衰变的機率不會隨著原子存在的時間長短而改變。對大量的原子而言,可以用量測衰變常數計算衰變速率及半衰期。其半衰期沒有已知的時間上下限,範圍可以到55個數量級,短至幾乎瞬間,長至久於宇宙年齡。 有許多種不同的放射性衰变。衰变或是能量的減少都會使有某種原子核的原子(父放射核素)轉變為有另一種原子核的原子,或是其中子或質子的數量不同,稱為子體核素。在一些衰变中,父放射核素和子體核素是不同的化學元素,因此衰变後產生了新的元素,這稱為核嬗变。 最早發現的衰变是α衰變、β衰變、γ衰變。α衰變是原子核放出α粒子(氦原子核),是最常見釋放核子的衰變,不過原子核偶爾也會釋放質子,或者釋放其他特殊的核子(稱為)。β衰變是原子核釋放電子(或正子)及反微中子,會將質子轉變為中子(或是將中子轉變為質子) 。核子也可能捕獲軌道上的電子,使質子轉變為中子,這為電子捕獲,上述的衰变都屬於核嬗变。 相反的,也有一些核衰变不會產生新的元素,受激態原子核的能量以伽馬射線的方式釋出,稱為伽馬衰变,或是將激发态原子核将能量转移至轨道电子上,轨道电子再脱离原子,稱為。若是核子中有大量高度受激的中子,有時會以中子發射的方式釋放能量。另外一種核衰变是將原來的原子核變為二個或多個較小的原子核,稱為自發性的核分裂,出現在大量的不穩定核子自發性的衰变時,一般也會釋放伽馬射線、中子或是其他粒子。 著名的例子像是鈾和釷,但也包括在自然界中,半衰期長的同位素,例如钾-40。例如15種是半衰期短的同位素,像鐳及氡,是由衰變後的產物,也有因為而產生的,像碳-14就是由宇宙射線撞擊氮-14而產生。放射性同位素也可能是因為粒子加速器或核反應爐而人工合成,其中有650種的半衰期超過一小時,有數千種的半衰期更短。.

新!!: 镎和放射性 · 查看更多 »

放射性同位素

放射性同位素(radionuclide,或radioactive nuclide),一種具有放射性的核素。是一種原子核不穩定的原子,每個原子也有很多同位素,每組同位素的原子序雖然是相同,但是卻有著不同的原子量,如果這原子是有放射性的話,它會被稱為物理放射性核種或放射性同位素。放射性同位素會進行放射性衰變,從而放射出伽瑪射線,和次原子粒子。 化學家和生物學家都把放射性同位素的技術應用在我們的食品、水和身體健康等事項上。不過他們也察覺到危險性,因而制訂使用的安全守則。有些放射性同位素是天然存在的,有些則是人工製造的,稱為人造放射性同位素。.

新!!: 镎和放射性同位素 · 查看更多 »

放射性同位素熱電機

卡西尼-惠更斯號上的RTG。 放射性同位素熱電機(Radioisotope Thermoelectric Generator,縮寫RTG、RITEG)是一種利用放射性衰變獲得能量的發電機。 此裝置利用熱電偶陣列(應用了西貝克效應)接收了一些合適的放射性物質在衰變時所放出熱量再將其轉成電能。 此熱電機也可被視為一種電池,而被當作一種能源裝設在人造衛星、太空探測器與無人遙控設備上,如蘇聯建立在極地的燈塔一樣,在一些無人或沒有人能維護到的地方,要供應少於百瓦的電力且需要的時間是燃料電池、電池組、發電機供應不來而太陽能電池在此地方又不能起作用時,放射性同位素熱電機就是理想的能源。.

新!!: 镎和放射性同位素熱電機 · 查看更多 »

重定向到这里:

93號元素Neptunium元素93第93號元素

传出传入
嘿!我们在Facebook上吧! »