目录
天文學
天文學是一門自然科學,它運用數學、物理和化學等方法來解釋宇宙間的天體,包括行星、衛星、彗星、恆星、星系等等,以及各種現象,如超新星爆炸、伽瑪射線暴、宇宙微波背景輻射等等。廣義地來說,任何源自地球大氣層以外的現象都屬於天文學的研究範圍。物理宇宙學與天文學密切相關,但它把宇宙視為一個整體來研究。 天文學有著遠古的歷史。自有文字記載起,巴比倫、古希臘、印度、古埃及、努比亞、伊朗、中國、瑪雅以及許多古代美洲文明就有對夜空做詳盡的觀測記錄。天文學在歷史上還涉及到天體測量學、天文航海、觀測天文學和曆法的制訂,今天則一般與天體物理學同義。 到了20世紀,天文學逐漸分為觀測天文學與理論天文學兩個分支。觀測天文學以取得天體的觀測數據為主,再以基本物理原理加以分析;理論天文學則開發用於分析天體現象的電腦模型和分析模型。兩者相輔相成,理論可解釋觀測結果,觀測結果可證實理論。 與不少現代科學範疇不同的是,天文學仍舊有比較活躍的業餘社群。業餘天文學家對天文學的發展有著重要的作用,特別是在發現和觀察彗星等短暫的天文現象上。 http://www.sydneyobservatory.com.au/ Official Web Site of the Sydney Observatory Astronomy (from the Greek ἀστρονομία from ἄστρον astron, "star" and -νομία -nomia from νόμος nomos, "law" or "culture") means "law of the stars" (or "culture of the stars" depending on the translation).
查看 速端曲線和天文學
威廉·哈密頓
威廉·哈密顿爵士(Sir William Rowan Hamilton,),愛爾蘭數學家、物理學家及天文學家。哈密顿最大的成就或许在於重新表述了牛顿力学,创立被称为哈密顿力学的力学表述。他的成果后在量子力学的发展中起到核心作用。哈密顿还对光学和代数的发展提供了重要的贡献,因为发现四元数而闻名。 他的妻子海倫·瑪俐亞·貝雷是一個牧師的女兒。哈密顿死於1865年9月2日,被安葬在都柏林杰羅姆山公墓。.
查看 速端曲線和威廉·哈密頓
形變
在機械工程學裏,形變定義為由於外力作用而造成的形狀改變,這外力可能是拉力、推力、剪力、彎力或扭力等。形變時常是用應變來描述。 如右圖可見,壓縮負載造成了圓筒的形變,原本的形狀(虛線)已經改變(形變),圓筒的側面凸出。圓筒雖然沒有裂開或敗壞,但其強度並不足以在負載下保持形狀不變,因此側面凸漲出來。 形變可能是暫時性的,就像放鬆的彈簧會回到原來的長度;形變也可能是永久性的,當物體不可逆地彎曲時便為永久形變。若过了一定的限度则不能恢复原状,这样的形变叫做塑性形变,此限度称作弹性限度。.
查看 速端曲線和形變
克卜勒問題
在經典力學裏,克卜勒問題是二體問題的一個特別案例。假若,兩個物體以連心力\mathbf\,\!互相作用;力的大小與距離r\,\!的平方成反比。則稱此物理系統所涉及的問題為克卜勒問題。反平方連心力以公式表示為 其中,k\,\!是常數,\hat\,\!是徑向單位向量。 連心力可以是吸引性的(k),也可以是排斥性的(k>0\,\!),對應的位勢為 克卜勒問題是因天文學家約翰內斯·克卜勒而命名。他推出了在天文學歷史上,具有關鍵價值的克卜勒定律。遵守克卜勒定律的作用力有那些特性呢(逆克卜勒問題)?在這方面,他也做了很多的研究。 在很多狀況下,會遇到克卜勒問題。天體力學時常會涉及克卜勒問題,因為牛頓萬有引力遵守反平方定律。例如,人造衛星環繞著地球,行星環繞著太陽,或雙星系統。克卜勒問題涉及了兩個電荷子的物理運動,因為靜電學的庫侖定律遵守反平方定律。例如,氫原子,正子素,與緲子偶素。這些典型系統,在測驗物理理論與測量自然常數上,都扮演了很重要的角色。 在經典力學裏,克卜勒問題與諧振子問題是兩個最基本的問題。只有這兩個問題的解答是閉合軌道;也就是說,物體從一點移動,經過一段路徑後,又回到原先點。在經典力學裏,克卜勒問題時常被用來發展新的表述方法,像拉格朗日力學,哈密頓力學,哈密頓-亞可比方程式,與作用量-角度坐標。在克卜勒問題裏,拉普拉斯-龍格-冷次向量是一個運動常數。克卜勒問題的解答使科學家能夠用經典力學完全地解釋清楚行星運動。這行星運動的科學解釋在啟蒙時代的開啟扮演了重要的角色。.
查看 速端曲線和克卜勒問題
物理学
物理學(希臘文Φύσις,自然)是研究物質、能量的本質與性質,以及它們彼此之間交互作用的自然科學。由於物質與能量是所有科學研究的必須涉及的基本要素,所以物理學是自然科學中最基礎的學科之一。物理學是一種實驗科學,物理學者從觀測與分析大自然的各種基於物質與能量的現象來找出其中的模式。這些模式(假說)稱為「物理理論」,經得起實驗檢驗的常用物理理論稱為物理定律,直到有一天被證明是有錯誤為止(具可否證性)。物理學是由這些定律精緻地建構而成。物理學是自然科學中最基礎的學科之一。化學、生物學、考古學等等科學學術領域的理論都是建構於這些物理定律。 物理學是最古老的學術之一。物理學、化學、生物學等等原本都歸屬於自然哲學的範疇,直到十七世紀至十九世紀期間,才漸漸地從自然哲學中分別成長為獨立的學術領域。物理學與其它很多跨領域研究有相當的交集,如量子化學、生物物理學等等。物理學的疆界並不是固定不變的,物理學裡的創始突破時常可以用來解釋這些跨領域研究的基礎機制,有時還會開啟嶄新的跨領域研究。 通過創建新理論與發展新科技,物理學對於人類文明有極為顯著的貢獻。例如,由於電磁學的快速發展,電燈、電動機、家用電器等新產品纷纷涌现,人類社會的生活水平也得到大幅提升。由於核子物理學日趨成熟,核能發電已不再是藍圖構想,但其所引致的安全問題也使人們意識到地球環境、生態與人類的脆弱渺小。.
查看 速端曲線和物理学
牛顿
牛顿(Newton)是一个欧洲人的姓氏,字源于地名。地名在古英语裡的意思是“新镇”。牛顿或Newton可以指:.
查看 速端曲線和牛顿
牛顿万有引力定律
万有引力定律(Newton's law of universal gravitation)指出,兩個質點彼此之間相互吸引的作用力,是與它們的質量乘積成正比,並與它們之間的距離成平方反比。 万有引力定律是由艾薩克·牛頓(Isaac Newton)稱之為歸納推理的經驗觀察得出的一般物理規律。它是經典力學的一部分,是在1687年于《自然哲学的数学原理》中首次發表的,并於1687年7月5日首次出版。當牛頓的書在1686年被提交給英國皇家學會時,羅伯特·胡克宣稱牛頓從他那裡得到了距離平方反比律。 此定律若按照現代語文,明示了:每一點質量都是通過指向沿著兩點相交線的力量來吸引每一個其它點的質量。力與兩個質量的乘積成正比,與它們之間的距離平方成反比。關於牛頓所明示質量之間萬有引力理論的第一個實驗,是英國科學家亨利·卡文迪什(Henry Cavendish)於1798年進行的卡文迪許實驗。這個實驗發生在牛頓原理出版111年之後,也是在他去世大約71年之後。 牛頓的引力定律類似於庫侖電力定律,用來計算兩個帶電體之間產生的電力的大小。兩者都是逆平方律,其中作用力與物體之間的距離平方成反比。庫侖定律是用兩個電荷來代替質量的乘積,用靜電常數代替引力常數。 牛頓定律的理論基礎,在現代的學術界已經被愛因斯坦的廣義相對論所取代。但它在大多數應用中仍然被用作重力效應的經典近似。只有在需要極端精確的時候,或者在處理非常強大的引力場的時候,比如那些在極其密集的物體上,或者在非常近的距離(比如水星繞太陽的軌道)時,才需要相對論。.
行星
行星(planet;planeta),通常指自身不發光,環繞著恆星的天體。其公轉方向常與所繞恆星的自轉方向相同(由西向東)。一般來說行星需具有一定質量,行星的質量要足夠的大(相對於月球)且近似於圓球狀,自身不能像恆星那樣發生核聚變反應。2007年5月,麻省理工學院一組空间科學研究隊發現了已知最熱的行星(2040攝氏度)。 隨著一些具有冥王星大小的天體被發現,「行星」一詞的科學定義似乎更形迫切。歷史上行星名字來自於它們的位置(与恒星的相对位置)在天空中不固定,就好像它們在星空中行走一般。太陽系内肉眼可見的5顆行星水星、金星、火星、木星和土星早在史前就已經被人類發現了。16世紀後日心说取代了地心说,人類瞭解到地球本身也是一顆行星。望遠鏡被發明和萬有引力被發現後,人類又發現了天王星、海王星,冥王星(2006年后被排除出行星行列,2008年被重分類為类冥天体,属于矮行星的一种)還有為數不少的小行星。20世紀末人類在太陽系外的恆星系統中也發現了行星,截至2013年7月12日,人類已發現2000多顆太陽系外的行星。.
查看 速端曲線和行星
风切变
风切变(wind shear),又稱风切或風剪,是指大氣中不同兩點之間的風速或風向的劇烈變化。.
查看 速端曲線和风切变
航空
航空(Aviation)狭义上则指的是载人或非载人的飞行器在大气层中的航行活动,广义上航空一词也指进行航空活动所必须的科学,同时也泛指研究开发航空器所涉及的各种技术。人类自古以来便有像鸟儿一样翱翔天空的愿望,但直到18世纪后期载人热气球在欧洲升空后才首度实现。20世纪初随着工业革命带来的科技进步,人类的航空事业得以迅速发展。1903年12月17日,美国人莱特兄弟成功试飞人类第一架重于空气、带有动力、受控并可持续滞空的飞机,开启了现代航空的新纪元。航空是21世纪最活跃和最具影响力的科学技术领域,该领域取得的重要成就标志着人类文明的发展水平,也体现着一个国家的综合国力及科学技术的水平。.
查看 速端曲線和航空
雷暴
雷暴是一種產生閃電及雷聲的自然天氣現象。它通常伴隨著滂沱大雨或冰雹,而在冬季時甚至會隨暴風雪而來。 雷暴可以在世界任何地方發生,甚至發生在兩極和沙漠地帶,但通常在低緯度的地方(特別是熱帶雨林地區)會較頻繁地發生,可以每日都會發生。在亞熱帶和溫帶等中緯度地區,雷暴則通常會在夏季的下午或傍晚發生,有時在冬季也會受冷鋒影響而有短時性雷暴。烏干達及印尼為全世界雷暴發生最頻繁的地方,除此之外,在美國中西部及南部州份會發生威力最強烈的雷暴,因為這些雷暴會與冰雹或龍捲風一起發生。至今為止,全世界從未出現過雷暴的地區只有南美洲智利北部的阿他加馬沙漠,該地因氣候過於乾燥和難以形成雨雲才會未出現過雷暴。 雷暴會在大氣不穩定時發生,並且會製造大量的雨水或冰晶。通常其發生有三種特定情況:地球大氣層低空帶的濕度很高,這可以由露點溫度觀察得到;高空與低空的溫度差異極大,亦即是氣溫遞減率極大;冷鋒受到外力的逼迫而匯聚。 在古老的文明裡,雷暴有著極大的影響力。不論是中國古代、古羅馬或美洲古文明皆有與雷暴相關的神話。.
查看 速端曲線和雷暴
速度
速度(Vēlōcitās,Vitesse,Velocità,Geschwindigkeit,Velocity)是描述物体运动快慢和方向的物理量。物体在一段时间\Delta t内的平均速度\bar是它在这段时间里的位移\Delta \boldsymbol和时间间隔之比: 物体在某一时刻的瞬时速度\boldsymbol则是定義為位置矢量\boldsymbol 隨時間t的變化率: 物理学中提到物体的速度通常是指其瞬时速度。速度在国际单位制中的单位是米每秒,国际符号是m/s,中文符号是米/秒。相对论框架中,物体的速度上限是光速。 日常生活中,速度和速率幾乎是同義的。然而在物理學中,速度和速率是两个不同的概念。速度是矢量,具有大小和方向;速率則純粹指物體運動的快慢,是标量,没有方向。举例来说,假如一辆汽车以60公里每小时的速率朝正北方行驶,那么它的速度是一个大小等于60公里每小时、方向指向正北的矢量。物体的瞬时速率等于瞬时速度的大小,而平均速率则不一定等于平均速度的大小。.
查看 速端曲線和速度
椭圆
在数学中,椭圆是平面上到两个固定点的距离之和为常数的点之轨迹。 根據該定義,可以用手繪橢圓:先準備一條線,將這條線的兩端各綁在固定的點上(這兩個點就當作是橢圓的兩個焦點,且距離小於線長);取一支筆,用筆尖将線繃緊,這時候兩個點和筆就形成了一個三角形(的兩邊);然後左右移動筆尖拉著線開始作圖,持續地使線繃緊,最後就可以完成一個橢圓的圖形了。.
查看 速端曲線和椭圆
气象学
气象学是把大气当作研究的客体,从定性和定量两方面来说明大气特征的学科,集中研究大气的天气情况和变化规律和对天气的预报。气象学是大气科学的一个分支。.
查看 速端曲線和气象学
湍流
湍流(turbulence),也稱為紊流(大陆地区的旧称),是流体的一种流动状态。当流速很小时,流体分层流动,互不混合,称为层流,或称为片流;逐渐增加流速,流体的流线开始出现波浪状的摆动,摆动的频率及振幅随流速的增加而增加,此种流况称为过渡流;当流速增加到很大时,流线不再清楚可辨,流场中有许多小漩涡,称为湍流,又称为--、扰流或紊流。 这种变化可以用雷诺数来量化。雷诺数较小时,黏滞力对流场的影响大于惯性力,流场中流速的扰动会因黏滞力而衰减,流体流动稳定,为层流;反之,若雷诺数较大时,惯性力对流场的影响大于黏滞力,流体流动较不稳定,流速的微小变化容易发展、增强,形成紊乱、不规则的湍流流场。 流态转变时的雷诺数值称为临界雷诺数。临界雷诺数与流场的参考尺寸有密切关系。一般管道流雷诺数Re<2100为层流状态,Re>4000为湍流状态,Re=2100~4000为过渡状态。 在管路设计中,湍流比层流需要更高的泵输出功率。而在热交换器或者反应器设计中,湍流反而有利于热传递或者充分混合。 有效地描述湍流的性质,至今仍然是物理学中的一个重大难题。.
查看 速端曲線和湍流
流体力学
流體力學(Fluid mechanics)是力學的一門分支,是研究流體(包含氣體、液體及等離子體)現象以及相關力學行為的科學。流體力學可以按照研究對象的運動方式分為流體靜力學和流體動力學,前者研究處於靜止狀態的流體,後者研究力對於流體運動的影響。流體力學按照應用範圍,分為:空氣力學及水力學等等。 流體力學是連續介質力學的一門分支,是以宏觀的角度來考慮系統特性,而不是微觀的考慮系統中每一個粒子的特性。流体力学(尤甚是流體動力學)是一個活躍的研究領域,其中有許多尚未解決或部分解決的問題。流體動力學所應用的數學系統非常複雜,最佳的處理方式是利用電腦進行數值分析。有一個現代的學科稱為計算流體力學,就是用數值分析的方式求解流體力學問題。是一個將流體流場視覺化並進行分析的實驗方式,也利用了流體高度可見化的特點。 理論流體力學的基本方程是纳维-斯托克斯方程,簡稱N-S方程,纳维-斯托克斯方程由一些微分方程組成,通常只有透過給予特定的邊界條件與使用數值計算的方式才可求解。纳维-斯托克斯方程中包含速度\vec.
查看 速端曲線和流体力学
另见
气流
- 下擊暴流
- 下降風
- 信風
- 塵捲風
- 季风
- 山谷风
- 改良藤田级数
- 晴空亂流
- 最大持续风速
- 最大风速半径
- 海陆风
- 火龍捲
- 烈風
- 焚風
- 熱帶氣旋等級
- 熱暴流
- 盛行风
- 蒲福氏風級
- 藤田级数
- 西風帶
- 速端曲線
- 風
- 風向
- 風媒傳粉
- 風速
- 风切变
- 风向标
- 风玫瑰图
- 高速氣流
- 龍捲風
亦称为 端点曲线图。