我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

逆数学

指数 逆数学

逆数学(Reverse mathematics)是数学的一个分支,大致可以看成是“从定理导向公理”而不是通常的方向(从公理到定理)。更精确一点,它试图通过找出证明所需的充分和必要的公理来评价一批常用数学结果的逻辑有效性。 该领域由Harvey Friedman在其文章“二阶算术系统及其应用(Some systems of second order arithmetic and their use)”中创立。它被Stephen G.

目录

  1. 4 关系: 定理一阶逻辑公理数学

  2. 证明论
  3. 递归论

定理

定理(Theorem)是經過受邏輯限制的證明為真的陈述。一般來說,在數學中,只有重要或有趣的陳述才叫定理。證明定理是數學的中心活動。一个定理陈述一个给定类的所有(全称)元素一种不变的关系,这些元素可以是无穷多,它们在任何时刻都无区别地成立,而没有一个例外。(例如:某些a是x,某些a是y,就不能算是定理)。 猜想是相信為真但未被證明的數學敘述,或者叫做命题,當它經過證明後便是定理。猜想是定理的來源,但並非唯一來源。一個從其他定理引伸出來的數學敘述可以不經過成為猜想的過程,成為定理。 如上所述,定理需要某些邏輯框架,繼而形成一套公理(公理系統)。同時,一個推理的過程,容許從公理中引出新定理和其他之前發現的定理。 在命題邏輯,所有已證明的敘述都稱為定理。.

查看 逆数学和定理

一阶逻辑

一阶逻辑是使用於数学、哲学、语言学及電腦科學中的一种形式系统。 過去一百多年,一階邏輯出現過許多種名稱,包括:一阶斷言演算、低階斷言演算、量化理論或斷言逻辑(一個較不精確的用詞)。一階邏輯和命題邏輯的不同之處在於,一階邏輯有使用量化變數。一個一階邏輯,若具有由一系列量化變數、一個以上有意義的斷言字母及包含了有意義的斷言字母的純公理所組成的特定論域,即是一個一階理論。 一階邏輯和其他高階邏輯不同之處在於,高階邏輯的斷言可以有斷言或函數當做引數,且允許斷言量詞或函數量詞的(同時或不同時)存在。在一階邏輯中,斷言通常和集合相關連。在有意義的高階邏輯中,斷言則會被解釋為集合的集合。 存在許多對一階邏輯是可靠(所有可證的敘述皆為真)且完備(所有為真的敘述皆可證)的演繹系統。雖然一階邏輯的邏輯歸結只是半可判定性的,但還是有許多用於一階邏輯上的自動定理證明。一階邏輯也符合一些使其能通過證明論分析的元邏輯定理,如勒文海姆–斯科倫定理及緊緻性定理。 一階邏輯是數學基礎中很重要的一部份,因為它是公理系統的標準形式邏輯。許多常見的公理系統,如一階皮亞諾公理和包含策梅洛-弗蘭克爾集合論的公理化集合論等,都可以形式化成一階理論。然而,一階定理並沒有能力去完整描述及範疇性地建構如自然數或實數之類無限的概念。這些結構的公理系統可以由如二階邏輯之類更強的邏輯來取得。.

查看 逆数学和一阶逻辑

公理

在傳統邏輯中,公理是沒有經過證明,但被當作不證自明的一個命題。因此,其真實性被視為是理所當然的,且被當做演繹及推論其他(理論相關)事實的起點。當不斷要求證明時,因果關係毕竟不能無限地追溯,而需停止於無需證明的公理。通常公理都很簡單,且符合直覺,如「a+b.

查看 逆数学和公理

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

查看 逆数学和数学

另见

证明论

递归论