我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

递归集合

指数 递归集合

在可计算性理论中,一个自然数的子集被称为递归的、可计算的或具可判定性,如果我们可以构造一个算法,使之能在有限时间内终止并判定一个给定元素是否属于这个集合。更一般的集合的类叫做递归可枚举集合。这些集合包括递归集合,对于这种集合,只需要存在一个算法,当某个元素位于这个集合中时,能够在有限时间内给出正确的判定结果,但是当元素不在这个集合中时,算法可能会永远运行下去(但不会给出错误答案)。.

目录

  1. 18 关系: 可计算函数可计算性理论可數集字母表 (计算机科学)形式语言当且仅当像 (數學)函数空集算法素数补集自然数递归可枚举集合递归函数递归语言指示函数有限集合

可计算函数

在可计算性理论中,可计算函数(computable function)或图灵可计算函数是研究的基本对象。它们使我们直觉上的算法概念更加精确。使用可计算函数来讨论可计算性而不提及任何具体的计算模型,如图灵机或寄存器机。但是它们的定义必须提及某种特殊的计算模型。 在可计算函数的精确定义之前,数学家经常使用非正式术语可有效计算的。这个术语因此可以被认同为可计算函数。尽管这些函数被叫做有效的,它们可能极其困难。可行可计算性和计算复杂性研究可有效计算的函数。 依据邱奇-图灵论题,可计算函数精确的是使用给出无限数量的时间和存储空间的机器计算设备来计算的函数。等价的说,这个论题声称有算法的任何函数都是可计算的。 可以使用Blum公理来在可计算函数的集合上定义抽象计算复杂性理论。在计算复杂性理论中,确定一个可计算函数的复杂性的问题叫做功能性问题。.

查看 递归集合和可计算函数

可计算性理论

在计算机科学中,可计算性理论(Computability theory)作为计算理论的一个分支,研究在不同的计算模型下哪些算法问题能够被解决。相对应的,计算理论的另一块主要内容,计算复杂性理论考虑一个问题怎样才能被有效的解决。.

查看 递归集合和可计算性理论

可數集

在数学上,可数集,或称可列集、可数无穷集合,是与自然数集的某个子集具有相同基數(等势)的集合。在这个意义下不是可数集的集合称为不可数集。这个术语是康托尔创造的。可数集的元素,正如其名,是“可以计数”的:尽管计数永远无法终止,集合中每一个特定的元素都将对应一个自然数。 “可数集”这个术语也可以代表能和自然数集本身一一对应的集合。例子参见两个定义的差别在于有限集合在前者中算作可数集,而在后者中不算作可数集。 为了避免歧义,前一种意义上的可数有时称为至多可数,参见.

查看 递归集合和可數集

字母表 (计算机科学)

在计算机科学中,字母表是字符或数字的有限集合。最常见的字母表是二元字母表。有限字符串是来自字母表的字符的有限序列;例如二元字符串是来自字母表的字符构成的字符串。字符的无限序列也可以用来自一个字母表的元素来构造。 给定一个字母表\Sigma,我们写\Sigma^*来指示在字母表\Sigma上的所有有限字符串的集合。这里的^*指示Kleene星号算子。我们写\Sigma^\infty(偶尔\Sigma^\N或\Sigma^\omega)来指示在字母表\Sigma上的所有无限序列的集合。 例如,如果我们使用二元字母表,则字符串ε, 0, 1, 00, 01, 10, 11, 000,等都将在这个字母表的Kleene闭包中(这里的ε表示空串)。 字母表在形式语言、自动机和半自动机理论中是重要。自动机如确定有限状态自动机(DFA)要求在形式定义中有字母表。.

查看 递归集合和字母表 (计算机科学)

形式语言

在数学、逻辑和计算机科学中,形式语言(Formal language)是用精确的数学或机器可处理的公式定义的语言。 如语言学中语言一样,形式语言一般有两个方面: 语法和语义。专门研究语言的语法的数学和计算机科学分支叫做形式语言理论,它只研究语言的语法而不致力于它的语义。在形式语言理论中,形式语言是一个字母表上的某些有限长字符串的集合。一个形式语言可以包含无限多个字符串。.

查看 递归集合和形式语言

当且仅当

当且仅当(If and only if)(中国大陆又称作当且--仅当,臺灣又称作若且--唯若),在--邏輯中,逻辑算符反互斥或閘(exclusive or)是对两个运算元的一种邏輯分析类型,符号为XNOR或ENOR或\Leftrightarrow。与一般的邏輯或非NOR不同,當兩兩數值相同為是,而數值不同時為否。在数学、哲学、逻辑学以及其他一些技术性领域中被用来表示“在,并且仅仅在这些条件成立的时候”之意,在英语中的对应标记为iff。“A当且仅当B”其他等价的说法有“当且仅当A則B”;“A是B的充分必要条件(充要條件)”。 一般而言,當我們看到“A当且仅当B”,我們可以知道“如果A成立時,則B一定成立;如果B成立時,則A也一定成立”;“如果A不成立時,則B一定不成立;如果B不成立時,則A也一定不成立”。.

查看 递归集合和当且仅当

像 (數學)

在数学中,像是一個跟函数相關的用語。.

查看 递归集合和像 (數學)

函数

函數在數學中為兩集合間的一種對應關係:輸入值集合中的每項元素皆能對應唯一一項輸出值集合中的元素。例如實數x對應到其平方x2的關係就是一個函數,若以3作為此函數的輸入值,所得的輸出值便是9。 為方便起見,一般做法是以符號f,g,h等等來指代一個函數。若函數f以x作為輸入值,則其輸出值一般寫作f(x),讀作f of x。上述的平方函數關係寫成數學式記為f(x).

查看 递归集合和函数

空集

集是不含任何元素的集合,數學符號為\empty、\varnothing或\。.

查看 递归集合和空集

算法

-- 算法(algorithm),在數學(算學)和電腦科學之中,為任何良定义的具體計算步驟的一个序列,常用於計算、和自動推理。精確而言,算法是一個表示爲有限長列表的。算法應包含清晰定義的指令用於計算函數。 算法中的指令描述的是一個計算,當其時能從一個初始狀態和初始輸入(可能爲空)開始,經過一系列有限而清晰定義的狀態最終產生輸出並停止於一個終態。一個狀態到另一個狀態的轉移不一定是確定的。隨機化算法在内的一些算法,包含了一些隨機輸入。 形式化算法的概念部分源自尝试解决希尔伯特提出的判定问题,並在其后尝试定义或者中成形。这些尝试包括库尔特·哥德尔、雅克·埃尔布朗和斯蒂芬·科尔·克莱尼分别于1930年、1934年和1935年提出的遞歸函數,阿隆佐·邱奇於1936年提出的λ演算,1936年的Formulation 1和艾倫·圖靈1937年提出的圖靈機。即使在當前,依然常有直覺想法難以定義爲形式化算法的情況。.

查看 递归集合和算法

素数

質--數(Prime number),又称素--数,指在大於1的自然数中,除了1和該数自身外,無法被其他自然数整除的数(也可定義為只有1與該數本身两个正因数的数)。大於1的自然數若不是質數,則稱之為合數。例如,5是個質數,因為其正因數只有1與5。而6則是個合數,因為除了1與6外,2與3也是其正因數。算術基本定理確立了質數於數論裡的核心地位:任何大於1的整數均可被表示成一串唯一質數之乘積。為了確保該定理的唯一性,1被定義為不是質數,因為在因式分解中可以有任意多個1(如3、1×3、1×1×3等都是3的有效因數分解)。 古希臘數學家歐幾里得於公元前300年前後證明有無限多個質數存在(欧几里得定理)。現時人們已發現多種驗證質數的方法。其中試除法比較簡單,但需時較長:設被測試的自然數為n,使用此方法者需逐一測試2與\sqrt之間的整數,確保它們無一能整除n。對於較大或一些具特別形式(如梅森數)的自然數,人們通常使用較有效率的演算法測試其是否為質數(例如277232917-1是直至2017年底為止已知最大的梅森質數)。雖然人們仍未發現可以完全區別質數與合數的公式,但已建構了質數的分佈模式(亦即質數在大數時的統計模式)。19世紀晚期得到證明的質數定理指出:一個任意自然數n為質數的機率反比於其數位(或n的對數)。 許多有關質數的問題依然未解,如哥德巴赫猜想(每個大於2的偶數可表示成兩個素數之和)及孿生質數猜想(存在無窮多對相差2的質數)。這些問題促進了數論各個分支的發展,主要在於數字的解析或代數方面。質數被用於資訊科技裡的幾個程序中,如公鑰加密利用了難以將大數分解成其質因數之類的性質。質數亦在其他數學領域裡形成了各種廣義化的質數概念,主要出現在代數裡,如質元素及質理想。.

查看 递归集合和素数

补集

在集合论和数学的其他分支中,存在--的两种定义:--和--。.

查看 递归集合和补集

自然数

数学中,自然数指用于计数(如「桌子上有三个苹果」)和定序(如「国内第三大城市」)的数字。用于计数时称之为基数,用于定序时称之为序数。 自然数的定义不一,可以指正整数 (1, 2, 3, 4, \ldots),亦可以指非负整数 (0, 1, 2, 3, 4, \ldots)。前者多在数论中使用,后者多在集合论和计算机科学中使用,也是 标准中所采用的定义。 数学家一般以\mathbb代表以自然数组成的集合。自然数集是一個可數的,無上界的無窮集合。.

查看 递归集合和自然数

递归可枚举集合

递归可枚举集合(Recursively enumerable set)是可计算性理论或更狭义的递归论中的一个概念。可数集合S被称为是递归可枚举、计算可枚举的、半可判定的或可证明的,如果.

查看 递归集合和递归可枚举集合

递归函数

在数理逻辑和计算机科学中,递归函数或μ-递归函数是一类从自然数到自然数的函数。直觉上递归函数是"可计算的"。事实上在可计算性理论中已经证明了它确实是图灵机的可计算函数。递归函数与原始递归函数相关,而且递归函数的归纳定义(见下)建立在原始递归函数之上。但不是所有递归函数都是原始递归函数——其中最著名的是阿克曼函数。 其他等价的函数类是λ-递归函数和马尔可夫算法可计算的函数。 所有递归函数的集合叫做R。.

查看 递归集合和递归函数

递归语言

在数学、逻辑和计算机科学中,递归语言或遞迴語言是也叫做可判定语言或图灵可判定语言的形式语言类型。所有递归语言的类经常被称为 R。这种语言类型在乔姆斯基层级中没有定义。.

查看 递归集合和递归语言

指示函数

在集合論中,指示函数是定义在某集合X上的函数,表示其中有哪些元素属于某一子集A。 。现在已经少用这一称呼。概率论有另一意思迥异的特征函数。 集X的子集A的指示函数是函数1_A: X \to \lbrace 0,1 \rbrace,定义为 |rowspan.

查看 递归集合和指示函数

有限集合

数学中,一个集合被称为有限集合,簡單來說就是元素個數有限,嚴格而言則是指有一个自然数n使该集合与集合之间存在双射。例如 -15到3之间的整数组成的集合,这个集合有19个元素,它跟集合存在雙射,所以它是有限的。不是有限的集合称为无限集合。 也就是说如果一个集合的基数是自然数,那这个集合就是有限的。所有的有限集合都是可数的,但并不是所有的可数集都是有限的,例如所有素数的集合。 有一个定理(戴德金定理)是:一个集合是有限的当且仅当不存在一个该集合与它的任何一个真子集之间的双射。 I I.

查看 递归集合和有限集合

亦称为 递归集。