目录
归纳法
归纳法可以指:.
查看 逆推法和归纳法
預測
測,是研究和預估未來將會發生的事件及結果。預測類似預言、預知、占卜,前者可能是可供检测的科學方法,後者则常常无法证伪。.
查看 逆推法和預測
計算複雜性理論
计算复杂性理论(Computational complexity theory)是理论计算机科学和数学的一个分支,它致力于将可计算问题根据它们本身的复杂性分类,以及将这些类别联系起来。一个可计算问题被认为是一个原则上可以用计算机解决的问题,亦即这个问题可以用一系列机械的数学步骤解决,例如算法。 如果一个问题的求解需要相当多的资源(无论用什么算法),则被认为是难解的。计算复杂性理论通过引入数学计算模型来研究这些问题以及定量计算解决问题所需的资源(时间和空间),从而将资源的确定方法正式化了。其他复杂性测度同样被运用,比如通信量(应用于通信复杂性),电路中门的数量(应用于电路复杂性)以及中央处理器的数量(应用于并行计算)。计算复杂性理论的一个作用就是确定一个能或不能被计算机求解的问题的所具有的实际限制。 在理论计算机科学领域,与此相关的概念有算法分析和可计算性理论。两者之间一个关键的区别是前者致力于分析用一个确定的算法来求解一个问题所需的资源量,而后者则是在更广泛意义上研究用所有可能的算法来解决相同问题。更精确地说,它尝试将问题分成能或不能在现有的适当受限的资源条件下解决这两类。相应地,在现有资源条件下的限制正是区分计算复杂性理论和可计算性理论的一个重要指标:后者关心的是何种问题原则上可以用算法解决。.
查看 逆推法和計算複雜性理論
逻辑
邏輯(λογική;Logik;logique;logic;意大利语、西班牙语、葡萄牙语: logica),又稱理則、論理、推理、推論,是对有效推論的哲學研究。邏輯被使用在大部份的智能活動中,但主要在哲學、心理、学习、推论统计学、脑科学、數學、語義學、 法律和電腦科學等領域內被視為一門學科。邏輯討論邏輯論證會呈現的一般形式,哪種形式是有效的,以及其中的謬論。 邏輯通常可分為三個部份:歸納推理、溯因推理和演繹推理。 在哲學裡,邏輯被應用在大多數的主要領域之中:形上學/宇宙論、本體論、知識論及倫理學。 在數學裡,邏輯是指形式逻辑和数理邏輯,形式逻辑是研究某個形式語言的有效推論。主要是演繹推理。 在辯證法中也會學習到邏輯。数理邏輯是研究抽象邏輯关系和数学基本的问题。 在心理、脑科学、語義學、 法律裡,是研究人类思想推理的处理。 在学习、推论统计学裡,是研究最大可能的结论。主要是歸納推理、溯因推理。 在電腦科學裡, 是研究各种方法的性质,可能性,和实现在机器上。主要是歸納推理、溯因推理,也有在歸納推理的研究。 从古文明开始(如古印度、中國和古希臘)都有對邏輯進行研究。在西方,亞里斯多德將邏輯建立成一門正式的學科,並在哲學中給予它一個基本的位置。.
查看 逆推法和逻辑
溯因推理
溯因法或溯因推理(英语:abductive reasoning,也译作反绎推理),是推理到最佳解释的过程。换句话说,它是开始于事实的集合--,并推导出其最佳解释的推理过程。有时使用术语溯因(abduction)意味生成假设来解释观察或结论,但是前者定义在哲学和计算二者中更常见。 演绎和溯因区别在于推理中使用“a 蕴涵b”这种规则的方向(与归纳的比较请参见逻辑推理): (以下b.
查看 逆推法和溯因推理
断言
斷言、宣稱、主張、聲明(assertion)或這概念有以下可能意義.
查看 逆推法和断言
亦称为 逆推推理。