我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

软骨细胞

指数 软骨细胞

软骨细胞(chondrocyte),在软骨发现的唯一一种细胞。软骨细胞生成和维持软骨基质(主要包括胶原和蛋白聚糖)。虽然成软骨细胞仍被经常用来描述不成熟的软骨细胞,但其实这在技术上是不准确的叫法。因为软骨细胞的前体(间叶干细胞)还能分化为造骨细胞。软骨细胞在软骨里的组织排列因软骨的种类和位置不同而异。.

目录

  1. 7 关系: 細胞器線粒體细胞外基质细胞核顯微照相软骨透射电子显微镜

  2. 动物细胞
  3. 结缔组织细胞

細胞器

细胞器(organelle,或稱--)是细胞的一部分, 是细胞中通过生物膜与细胞中其他部分分隔开来的、功能上独立的亚细胞结构,与细胞质基质和细胞骨架统称为“细胞质”。 细胞器可依各自拥有膜的层数大致分为三类(广义的細胞器还包括囊泡及核小体等):.

查看 软骨细胞和細胞器

線粒體

--(mitochondrion)是一种存在于大多数真核细胞中的由两层膜包被的细胞器,直径在0.5到10微米左右。除了溶组织内阿米巴、篮氏贾第鞭毛虫以及几种微孢子虫外,大多数真核细胞或多或少都拥有线粒体,但它们各自拥有的线粒体在大小、数量及外观等方面上都有所不同。这种细胞器拥有自身的遗传物质和遗传体系,但因其基因组大小有限,所以线粒体是一种半自主细胞器。线粒体是细胞内氧化磷酸化和合成三磷酸腺苷(ATP)的主要场所,为细胞的活动提供了化学能量,所以有“細胞的發電站”(the powerhouse of the cell)之称。除了为细胞供能外,线粒体还参与诸如细胞分化、细胞信息传递和细胞凋亡等过程,并拥有调控细胞生长和细胞周期的能力。 英文中的“线粒体”(mitochondrion,复数形式为“mitochondria”)一词是由希腊语中的“线”(“μίτος”或“mitos”)和“颗粒”(“χονδρίον”或“chondrion”)组合而成的。在“线粒体”这一名称出现前后,“粒体”“球状体”等众多名字曾先后或同时被使用。这些现在已不再继续使用的名称包括:blepharoblast、condriokont、chondriomite、chondrioplast、chondriosome、chondrioshere、filum、fuchsinophilic granule、interstitial body、körner、fädenkörner、mitogel、parabasal body、plasmasome、plastochondria、plastome、sphereoplast和vermicle等(按首字母在英文字母表中的顺序排列),其中“chondriosome”(可译为“颗粒体”)直至1982年仍见诸欧洲各国的科学文献。.

查看 软骨细胞和線粒體

细胞外基质

在生物学,细胞外间质或细胞外基质(Extracellular matrix)是动物组织的一部分,不属于任何细胞。细胞外间质决定结缔组织的特性。.

查看 软骨细胞和细胞外基质

细胞核

细胞核(nucleus)是存在於真核細胞中的封閉式膜狀细胞器,內部含有細胞中大多數的遺傳物質,也就是DNA。這些DNA與多種蛋白質,如組織蛋白複合形成染色質。而染色質在細胞分裂時,會濃縮形成染色體,其中所含的所有基因合稱為核基因組。細胞核的作用,是維持基因的完整性,並藉由調節基因表現來影響細胞活動。 細胞核的主要構造為核膜,是一種將細胞核完全包覆的雙層膜,可使膜內物質與細胞質、以及具有細胞骨架功能的網狀結構核纖層分隔開來。由於多數分子無法直接穿透核膜,因此需要核孔作為物質的進出通道。這些孔洞可讓小分子與離子自由通透;而如蛋白質般較大的分子,則需要攜帶蛋白的幫助才能通過。核運輸是細胞中最重要的功能;基因表現與染色體的保存,皆有賴於核孔上所進行的輸送作用。 細胞核內不含有任何其他膜狀的結構,但也並非完全均勻,其中存在許多由特殊蛋白質、RNA以及DNA所複合而成的次核體。而其中受理解最透徹的是核仁,此結構主要參與核糖體的組成。核糖體在核仁中產出之後,會進入細胞質進行mRNA的轉譯。.

查看 软骨细胞和细胞核

顯微照相

顯微照相是以顯微鏡或類似的器材所攝取的相片或影像,以顯示放大了的物件影像。顯微照相是由加拿大發明家范信達所發明。 有製造顯微照相,可以在顯微鏡上安裝照相機,取代目鏡;或是特製連同照相機及目鏡的顯微鏡。標本可以按正常的方法放在顯微鏡下來進行拍攝。可以掃瞄影像及以電子方式儲存,在螢幕上觀看或列印出來。 顯微照相被廣泛應用在法醫學及鑑識工程,尤其是紀錄微量物證。這也會經常用在掃描電子顯微鏡與及X光能譜分析儀,令照相的部份變成直接可見的。...

查看 软骨细胞和顯微照相

软骨

軟骨(cartilage)是人和脊椎动物特有的胚胎性骨骼,一種無血管組織,略带弹性的坚韧组织,在机体内起支持和保护作用。由於軟骨沒有血液供應,在基質中含有大量的第二型膠原和葡萄糖胺聚合醣(GAG)來幫助物質擴散。在胎儿和年幼期,软骨组织分布较广,后来逐渐被骨组织代替。 软骨可分为、和。成年人软骨存在于骨的关节面、肋软骨、气管、耳廓、椎间盘等处。.

查看 软骨细胞和软骨

透射电子显微镜

透射电子显微镜(Transmission electron microscope,縮寫:TEM、CTEM),简称--电镜,是把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。散射角的大小与样品的密度、厚度相关,因此可以形成明暗不同的影像,影像将在放大、聚焦后在成像器件(如荧光屏、胶片、以及感光耦合组件)上显示出来。 由于电子的德布罗意波长非常短,--电子显微镜的分辨率比光学显微镜高的很多,可以达到0.1~0.2nm,放大倍数为几万~百万倍。因此,使用透射电子显微镜可以用于观察样品的精细结构,甚至可以用于观察仅仅一列原子的结构,比光学显微镜所能够观察到的最小的结构小数万倍。TEM在中和物理学和生物学相关的许多科学领域都是重要的分析方法,如癌症研究、病毒学、材料科学、以及纳米技术、半导体研究等等。 在放大倍数较低的时候,TEM成像的对比度主要是由于材料不同的厚度和成分造成对电子的吸收不同而造成的。而当放大率倍数较高的时候,复杂的波动作用会造成成像的亮度的不同,因此需要专业知识来对所得到的像进行分析。通过使用TEM不同的模式,可以通过物质的化学特性、晶体方向、电子结构、样品造成的电子相移以及通常的对电子吸收对样品成像。 第一台TEM由马克斯·克诺尔和恩斯特·鲁斯卡在1931年研制,这个研究组于1933年研制了第一台分辨率超过可见光的TEM,而第一台商用TEM于1939年研制成功。.

查看 软骨细胞和透射电子显微镜

另见

动物细胞

结缔组织细胞