徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

细胞核

指数 细胞核

细胞核(nucleus)是存在於真核細胞中的封閉式膜狀细胞器,內部含有細胞中大多數的遺傳物質,也就是DNA。這些DNA與多種蛋白質,如組織蛋白複合形成染色質。而染色質在細胞分裂時,會濃縮形成染色體,其中所含的所有基因合稱為核基因組。細胞核的作用,是維持基因的完整性,並藉由調節基因表現來影響細胞活動。 細胞核的主要構造為核膜,是一種將細胞核完全包覆的雙層膜,可使膜內物質與細胞質、以及具有細胞骨架功能的網狀結構核纖層分隔開來。由於多數分子無法直接穿透核膜,因此需要核孔作為物質的進出通道。這些孔洞可讓小分子與離子自由通透;而如蛋白質般較大的分子,則需要攜帶蛋白的幫助才能通過。核運輸是細胞中最重要的功能;基因表現與染色體的保存,皆有賴於核孔上所進行的輸送作用。 細胞核內不含有任何其他膜狀的結構,但也並非完全均勻,其中存在許多由特殊蛋白質、RNA以及DNA所複合而成的次核體。而其中受理解最透徹的是核仁,此結構主要參與核糖體的組成。核糖體在核仁中產出之後,會進入細胞質進行mRNA的轉譯。.

126 关系: 基因基因組基因表現基因表達原生動物原核生物卡哈爾體卵细胞南京市单体古菌叶绿体受精吞噬作用多腺苷酸化孟德尔定律小核仁RNA巨噬细胞己糖激酶两栖动物中间纤维二聚體弗蘭茨·邁恩弗朗茲·鮑爾信使RNA分子量單磷酸腺苷單核球哺乳动物唐氏综合征內共生學說共生剪接體倫敦林奈學會皮質醇着絲粒离子突變原端粒精子糖酵解細胞器細胞質細胞週期線粒體红血球细菌细胞细胞骨架罗伯特·布朗...羅伯特·雷馬克真菌真染色質真核生物組織蛋白痘病毒科炎症生物化学產甲烷作用甾体激素电子显微镜異染色質DNA聚合酶螺旋酶選擇性剪接遺傳物質遺傳性疾病菌根鐮刀型紅血球疾病表型馬蒂亞斯·雅各布·施萊登骨骼肌骨髓高分子鲁道夫·菲尔绍转录转录后修饰转录因子软体动物轉譯蘭科間期葡萄糖葡萄糖-6-磷酸肌动蛋白肌細胞脱氧核糖核酸醛固酮自體免疫疾病配體 (生物化學)蛋白質一級結構蛋白质G蛋白MRNANF-κBRNA剪接RNA聚合酶TNF-α染色体染色质染料果糖-6-磷酸核孔核孔蛋白核小體核仁核糖体核糖體RNA核糖核酸核纖層核運輸核膜核酸氧气江苏省激酶有絲分裂有性生殖的演化浮黴菌門海膽早年衰老症候群攜帶蛋白拟核拓撲異構酶5'端帽 扩展索引 (76 更多) »

基因

基因一词来自希腊语,意思为“生”。是指控制生物性状的遗传信息,通常由DNA序列来承载。基因也可视作基本遗传单位,亦即一段具有功能性的DNA或RNA序列。弄清其序列本身的过程叫基因测序。基因的结构由增强子,启动子及蛋白编码序列组成:即基因产物可以是蛋白质(蛋白质编码基因)及RNA,从而控制生物个体的性状(差異)表现。在一个个体当中所有的基因总和叫基因组。在一个物种中所有等位基因的总合叫基因库。在大多数真核生物中,基因分为细胞核基因及线粒体基因,绿色植物的叶绿体也含有独立于细胞核的叶绿体基因组。人類約有一万九千至兩萬两千個基因。 在真核生物中,染色体在体细胞中是成对存在的。每条染色体上都带有一定数量的基因。一个基因在细胞有丝分裂时有两个对列的位点,称为等位基因,分别来自父与母。依所攜帶性状的表現,又可分为显性基因和隐性基因。 一般来说,同一生物体中的每个细胞體都含有相同的基因(除了已经分化的免疫细胞),但并不是每个细胞中的所有基因携带的遗传信息都会被表現出来。控制基因表达的因素分为传统的遗传学(增强子,启动子序列相关)因素及表观遗传学(DNA甲基化,组蛋白乙酰化和脱乙酰化及RNA干扰相关)因素。職司不同功能的細胞或不同的细胞类型中,活化而表現的基因也不同。在某一细胞类型当中所有被表达的基因叫转录组,所有编码蛋白质的基因叫蛋白质组。通过即时聚合酶链式反应或染色质免疫沉淀-测序可得到转录组及蛋白质组的信息。用电脑处理基因序列的学科叫生物信息学。 人类基因组计划(human genome project, HGP)是一项规模宏大,跨国跨学科的生物信息学项目。其宗旨在于测定组成人类染色体(指单倍体)的30亿个碱基对形成的核苷酸序列,从而繪製人类基因组圖譜,並且辨識其载有的基因,达到破译人类遗传信息的最终目的。该计划起始于1990年于2000年完成。.

新!!: 细胞核和基因 · 查看更多 »

基因組

在生物学中,一个生物体的基因组是指包含在该生物的DNA(部分病毒是RNA)中的全部遗传信息,又稱基因體(genome)。基因组包括基因和非編碼DNA。1920年,德国汉堡大学植物学教授汉斯·温克勒(Hans Winkler)首次使用基因组这一名词。 更精确地讲,一个生物体的基因组是指一套染色体中的完整的DNA序列。例如,生物个体体细胞中的二倍体由两套染色体组成,其中一套DNA序列就是一个基因组。基因组一词可以特指整套核DNA(例如,核基因组),也可以用于包含自己DNA序列的细胞器基因组,如粒线体基因组或叶绿体基因组。当人们说一个有性生殖物种的基因组正在测序时,通常是指测定一套常染色体和两种性染色体的序列,这样来代表可能的两种性别。即使在只有一种性别的物种中,“一套基因组序列”可能也综合了来自不同个体的染色体。通常使用中,“遗传组成”一词有时在交流中即指某特定个体或物种的基因组。对相关物种全部基因组性质的研究通常被称为基因组学,该学科与遗传学不同,后者一般研究单个或一组基因的性质。.

新!!: 细胞核和基因組 · 查看更多 »

基因表現

基因表現(Gene expression)是用基因中的信息来合成基因产物的过程。产物通常是蛋白质,但对于非蛋白质编码基因,如转运RNA(tRNA)和小核RNA(snRNA),产物则是RNA。所有已知生物都通过基因表达来生成生命所需的高分子物质。 基因表現的过程可分为转录、RNA剪接、翻译、蛋白质的翻译后修饰这几步。控制细胞的结构与功能,同时也是细胞分化、及生物体的多功能性和的基础。不同的時間、不同的環境,以及不同部位的細胞,或是基因在細胞中的含量差異,皆可能使基因產生不同的表現。基因调节也可以作为进化变化的底物,因为基因表达的时间,位置和数量的控制可以对基因在细胞或多细胞生物体中的功能(作用)具有深远的影响。 在遗传学中,基因表現是基因型产生表型(即可观察的性状)的最基本的层次。.

新!!: 细胞核和基因表現 · 查看更多 »

基因表達

#重定向 基因表現.

新!!: 细胞核和基因表達 · 查看更多 »

原生動物

原生动物是原生生物當中較接近動物的一類,简称原虫。由单细胞所组成,异养生活,能够运动。但是有些物种介于植物和动物之间,如眼虫,因为它们能进行光合作用;它们又能运动,并像真正的动物那样进食。动物中排除原生动物,剩下的多细胞动物被称为后生动物。后生动物中有了组织分化的被称为真后生动物。 原虫很微小,一般只能通过显微镜才能看到。但在马里亚纳海沟发现的一类有孔蟲門原蟲:en:Xenophyophores,直径可以达到20厘米,為最大的原生動物。经记录的原生动物约有50000种,其中大约有20000种为化石种。 按照支序分類學說的觀點,原生動物是真核生物除去多細胞動物、植物、真菌之外的部分,爲併系群,且區分動植物的標準——運動和光合作用均與生物演化分類無關。光合作用並非真核生物的原始屬性,而是分別通過一次或多次内共生來實現的,各個營光合作用的種類彼此間並無親緣關係。因此原生動物只是一個集合概念,而不應作爲生物分類的單元。原生動物现在被更准确地划分在一个单独的界:原生生物.

新!!: 细胞核和原生動物 · 查看更多 »

原核生物

原核生物(英文:prokaryote)是通常由單一原核细胞形成的生物。相对于真核细胞,原核细胞一般没有细胞内膜、没有核膜包裹的成型细胞核,细胞内无染色体,DNA链未螺旋化,並以游離的形成存在於細胞質中,细胞质内也无任何有膜的细胞器(如粒線體或葉綠體)。有些分類學者將原核生物歸於原核生物域(Prokaryota),但現行的三域系統不採此說,而是將古菌域和細菌域的生物視為原核生物,原核生物本身不作為生物分類的層級。 大部分原核生物为单细胞生物。根据《伯杰氏细菌鉴定手册》,原核生物分为四大类,“有细胞壁的革兰氏阴性真细菌”,“有细胞壁的革兰氏阳性真细菌”,“无细胞壁的真细菌”,“古细菌”。环境中常见的原核生物有细菌、放线菌、古细菌、螺旋体、衣原体、支原体、立克次氏体和蓝细菌等光合性细菌。 Prokaryota亦拼寫為"procaryotes-ß"Campbell, N. "Biology:Concepts & Connections".

新!!: 细胞核和原核生物 · 查看更多 »

卡哈爾體

卡哈爾體(Cajal body,或譯柯浩体),是存在于细胞核裡的细胞器。卡哈爾體是相当具保留性的核细胞器。到目前为止,在脊椎动物、果蝇、酵母菌,以及植物中均发现存在卡哈爾體。尽管卡哈爾體被发现已经100多年,卡哈爾體的确切功能还不是很明朗。初步证据顯示卡哈爾體可能与参与mRNA剪接的「snRNA-蛋白质复合体」的成熟有关。 1903年,西班牙医学家圣地亚哥·拉蒙-卡哈尔用高尔基染色法在兔和人的神经元细胞核内发现着色的除核仁外,还有一个黑点,他称之为「核仁附属体」(nucleolar accessory body)。之后一些科学家在其他生物的细胞核发现类似的结构,并给以不同的名称。直到1999年,美国细胞生物学家Joseph G. Gall建议将这些相同的核细胞器重新命名为“卡哈爾體”以纪念它的发现者。 Category:核亚结构 Category:細胞器.

新!!: 细胞核和卡哈爾體 · 查看更多 »

卵细胞

卵子是雌性动物的生殖细胞。卵细胞(由次级卵母细胞产生)成熟后成为卵子。 在哺乳动物上,卵子是由卵巢所產生的。所有哺乳類在出生時,卵巢內已經有未成熟的卵子存在,而且在出生後卵子數目不會增加。卵子和精子結合受精便形成受精卵,即一個新生命的開始。一些動物(例如鳥類)是進行體內受精(in vivo fertilisation)的,而另一些動物(例如大部份的魚類和兩棲類動物)則是進行體外受精。.

新!!: 细胞核和卵细胞 · 查看更多 »

南京市

南京市(英文:Nanjing,邮政式拼音:Nanking),简称「宁」,别称金陵,是中華人民共和國江蘇省省会、副省級城市和特大城市,華東地區區域中心城市暨第二大城市。地處長江下游沿岸,位於江蘇省西南部。是長江下游和長三角地區重要產業城市、長三角的副中心城市和江蘇省的政治、經濟、科教、文化、信息中心,也是全國綜合性交通和通信枢纽城市以及科教中心城市之一。 全市下轄11個區,总面积6582.31平方公里,2016年底常住人口827.05万,其中城镇人口678.14万人。 南京有2500多年建城史和前后近500年建都史,先後有東吳、東晉、南朝宋、齐、梁、陈、南唐、明朝、太平天國、中華民國等十個朝代及政权定都南京,有「六朝古都」、「十朝都会」之称,历史上长期是中国南方的政治文化中心,亦被視為中华之正朔所在,是國家首批国家历史文化名城。 南京是全國重要科教文化中心,有八所大學列入全國百所重點建設大學,居各大城市第三位。根據自然出版集团发布的2016年自然指數,位居國內科研領先城市前三。技術研發經費支出、發明專利數量名列前茅。新興產業蓬勃,例如,軟件與信息服務業居全國第四,新型顯示產業居全國第二,智慧電網產業居全國首位,設有南京軟件谷、智慧電網谷、生物醫藥谷、衛星應用產業園等多个產業園區。有中國三大圖書館之一的南京圖書館、三大博物館之一的南京博物院等。.

新!!: 细胞核和南京市 · 查看更多 »

单体

在高分子化学中,单体是可与同种或他种分子通过共价键连接生成聚合物的小分子。英文的“单体”(monomer)一词来源于希腊语的“一”(mono)和“部分”(meros)。.

新!!: 细胞核和单体 · 查看更多 »

古菌

古菌(Archaea,来自,意为“古代的东西”)又稱古細菌、古生菌或太古生物、古核生物,是单细胞微生物,构成生物分类的一个域,或一个界。这些微生物属于原核生物,它們與细菌有很多相似之處,即它们没有细胞核与任何其他膜结合细胞器,同時另一些特徵相似於真核生物,比如存在重复序列与核小体。 过去曾经将古菌和细菌一同归为原核生物,并将其命名为“古细菌”,但这种分类方式已过时。事实上古菌有其独特的进化历程,并与其它生命形式有显著的生化差异,所以现在将其列为三域系统中的一个域。在这个系统中,古菌、细菌与真核生物各为一个域,并进一步划分为界与门。到目前为止,古菌已被划分为公认的四个门,随着进一步研究,还可能建立更多的门类。在这些类群中,研究最深入的是泉古菌门与广古菌门。但对古菌进行分类仍然是困难的,因为绝大多数的古菌都无法在实验室中纯化培养,只能通过环境宏基因组检测来分析。 古菌和细菌的大小和形状非常相似,但少数古菌有不寻常的形状,如嗜鹽古菌拥有平面正方形的细胞。尽管看起来与细菌更相似,但古菌与真核生物的亲缘关系更为密切,特别是在一些代谢途径(如转录和转译)有关酶的相似性上。古菌还有一些性状是独一无二的,比如由依赖醚键构成的细胞膜。与真核生物相比,古菌有更多的能量来源,从熟悉的有机物糖类到氨到金属离子直到氢气。(如)可以以太阳光为能源,其它一些种类的古菌能进行;但不像蓝藻与植物,没有一种古菌能同时做到这两者而进行光合作用。古菌通过分裂、出芽、断裂来进行无性生殖,但没有发现能产生孢子的种类。 一开始,古菌被认为都是一些生活在温泉、盐湖之类极端环境的嗜极生物,但近来发现它们的栖息地其实十分广泛,从土壤、海洋、到河流湿地。它们也被发现在人类的大肠、口腔、与皮肤。尤其是在海洋中古菌特别多,一些浮游生物中的古菌可能是这个星球上数量最大的生物群体。现在,古菌被认为是地球生命的一个重要组成部分,在碳循环和氮循环中可能扮演重要的角色。目前没有已知的作为病原体或寄生虫的古菌,他们往往是偏利共生或互利共生。一个例子是,生活在人和反刍动物的肠道中帮助消化,还被用于沼气生产和污水处理。嗜极生物古菌中的酶能承受高温和有机溶剂,在被生物技术所利用。.

新!!: 细胞核和古菌 · 查看更多 »

叶绿体

-- 葉綠體(chloroplast)是绿色植物和藻类等真核自养生物细胞中专业化亚单元的细胞器。其主要作用是进行光合作用,其中含有的光合色素叶绿素从太阳光捕获能量,并将其存储在能量储存分子ATP和NADPH,同时从水中释放氧气。然后,它们使用ATP和NADPH,在被称为卡尔文循环的过程中从二氧化碳制造有机分子。叶绿体实施许多其它功能,包括植物的脂肪酸合成,很多氨基酸的合成,和免疫反应。 叶绿体是三种类型的质体(plastid)之一,其特点是其高浓度的叶绿素。(其他两个质体类型是白色体和有色体,含有少量叶绿素并且不能进行光合作用。)叶绿体是高度动态的,它们循环并在植物细胞内四处移动,并且偶尔分裂成两个来生殖。它们的行为受到环境因素如光的颜色和强度的强烈影响。叶绿体和线粒体类似,拥有自身的遗传物质DNA,但因其基因组大小有限,是一种半自主细胞器。这DNA被认为是从已被古代真核生物的细胞吞没的有光合作用的蓝菌门祖先继承下来。叶绿体不能由植物细胞产生,且必须在植物细胞分裂期间由每个子细胞继承叶绿体。 英文中的“叶绿体”(chloroplast)一词来源于希腊语中的“χλωροπλάστης”,该词由“绿”(“chloros”或“χλωρός”)和“成型”(“plastis”或“πλάστης”)组合而成。.

新!!: 细胞核和叶绿体 · 查看更多 »

受精

受精也稱作配子結合、懷孕或受胎,指來自同一物種的生殖細胞(配子)結合並形成新生物個體的過程。對動物來說,這個過程是由精子及卵子融合,最後發育形成胚胎。依照不同的動物物種,受精可以分為發生在雌性體內的體內受精;或是雌性體外的體外受精。.

新!!: 细胞核和受精 · 查看更多 »

吞噬作用

吞噬作用(phagocytosis,来自古希腊语φαγεῖν)亦称吞食、噬菌作用,是吞噬细胞和原生动物通过细胞膜从周围环境摄取固体颗粒,并在其内部形成吞噬体的过程。 吞噬作用是细胞内吞作用的特殊形式,是将周围环境中的固体颗粒例如细菌等通过小泡的形式吞食进入细胞内部,这点与吞饮外部液体的胞饮作用等内吞作用的其他形式相区分。对于一些细胞而言,吞噬作用是为了获取营养物质,而在免疫系统中,这一细胞机制更多地用于清理病原体和细胞碎片等。细菌、死亡的组织细胞以及矿物质微粒都可以成为被吞噬的对象。 对于单细胞生物而言,吞噬作用与进食活动是同源的,而对于除丝盘虫以外的多细胞生物而言,这一机制更多地服务于细胞碎片与病原体的清理,而非为细胞活动提供能量。.

新!!: 细胞核和吞噬作用 · 查看更多 »

多腺苷酸化

多腺苷酸化(Polyadenylation)是指多聚腺苷酸與信使RNA(mRNA)分子的共價鏈結。在蛋白質生物合成的過程中,這是產生準備作翻譯的成熟mRNA的方式的一部份。在真核生物中,多聚腺苷酸化是一種機制,令mRNA分子於它們的3'端中斷。多聚腺苷酸尾(Poly-A Tail)保護mRNA,免受核酸外切酶攻擊,並且對轉錄終結、將mRNA從細胞核輸出及進行翻譯都十分重要。一些原核生物的mRNA都會被多聚腺苷酸化,但多聚腺苷酸尾的功能則與真核生物有所不同。 當脱氧核糖核酸(DNA)在細胞核內轉錄成核糖核酸(RNA)的過程中及完成後,多聚腺苷酸化就會出現。當轉錄停止後,mRNA鏈會由核酸外切酶及RNA聚合酶切開。切開位點的附近有著AAUAAA序列。當mRNA被切開後,會加入50-250個腺苷到切開位點的3'端上。這個反應是由多聚腺苷酸聚合酶完成的。.

新!!: 细胞核和多腺苷酸化 · 查看更多 »

孟德尔定律

孟德尔定律是一系列描述了生物特性的遗传规律并催生了遗传学誕生的著名定律,包括两项基本定律和一项原则即:显性原则、分离定律(孟德爾第一定律),以及自由组合定律(孟德爾第二定律)。此定律由奥地利修道院士格里哥·孟德尔于1865至1866年间发表,并在1900年被重新发现。定律发表初时颇具争议。孟德尔定律与托马斯·摩尔根1915年发表的遗传的染色体学说(Boveri-Sutton chromosome theory)共同组成了经典遗传学的基础。英国遗传学家罗纳德·费希尔将二者与自然选择学说相结合,发表于他1930年的著作《自然选择的遗传理论》(The Genetical Theory of Natural Selection)中,他为进化提供了数学理论基础,同时也是群体遗传学和现代演化综论的奠基者。.

新!!: 细胞核和孟德尔定律 · 查看更多 »

小核仁RNA

#重定向 核仁小核糖核酸.

新!!: 细胞核和小核仁RNA · 查看更多 »

巨噬细胞

巨噬細胞(macrophage,縮寫為mφ)是一種位於組織內的白血球,源自單核球,而單核球又來源於骨髓中的前體细胞。巨噬細胞和單核球皆為吞噬細胞,在脊椎動物體內參與非特異性防衛(先天性免疫)和特異性防衛(细胞免疫)。它們的主要功能是以固定細胞或游離細胞的形式對細胞残片及病原體進行噬菌作用(即吞噬以及消化),并激活淋巴球或其他免疫細胞,令其對病原體作出反應。.

新!!: 细胞核和巨噬细胞 · 查看更多 »

己糖激酶

己糖激酶(Hexokinase;又称六碳糖激酶)是生物體內的重要酵素,功能是參與D-己糖(例如D-葡萄糖、D-果糖、D-甘露糖)磷酸化產生D-己糖-6-磷酸的過程,這個過程會消耗一個ATP,並使其轉變成ADP。.

新!!: 细胞核和己糖激酶 · 查看更多 »

两栖动物

兩棲動物(學名:),又名两生动物,包括所有生没有卵殼的卵,拥有四肢的脊椎动物。两栖动物的皮肤裸露,表面没有鳞片、毛发等覆盖,但是可以分泌黏液以保持身体的湿润;其幼体在水中生活,用鳃进行呼吸,长大后用肺兼皮肤呼吸。两栖动物可以爬上陆地,但是不能一生离水,因为可以在两处生存,称为两栖。牠是脊椎动物从水栖到陆栖的过渡类型。现在大约有七千多种两栖动物。兩棲動物是冷血動物(冷血动物也就是变温动物)。.

新!!: 细胞核和两栖动物 · 查看更多 »

中间纤维

中间纤维(英語:Intermediate filaments,IF,又譯中間絲)直径10纳米(nm)左右,介于7 nm的肌动蛋白微丝和25 nm的微管之间。与后两者不同的是中间纤维是最稳定的细胞骨架成分,它主要起支撑作用。中间纤维在细胞中围绕着细胞核分布,成束成网,并扩展到细胞质膜,与质膜相连结。中间纤维没有正负极性。它们是一个相关的蛋白质家族, 分享共同的结构和序列特征。大多数类型的中间纤维存在于细胞质,但有一种类型的中间纤维–核纤层蛋白存在于细胞核。.

新!!: 细胞核和中间纤维 · 查看更多 »

二聚體

二聚体(Dimer)或稱双体、二聚物在不同領域中有不同意義,但基本涵義都表示相同或同一種類的物質,以成雙的型態出現,可能具有單一狀態時沒有的性質或功能。 化學上,凡是两个分子结合成一个新的物质,无论是物理作用还是化学变化,都可以将生成的物质称为二聚体。常见的例子包括二聚氯化亚铜、二聚氯化铝、二乙烯酮、气态的二聚羧酸、二聚环戊二烯、二聚环丁二烯等等,它可以是聚合物中的一種特例。蔗糖由葡萄糖和果糖单元縮合而成,則蔗糖雖為一個分子,仍歸屬為一種二聚体。.

新!!: 细胞核和二聚體 · 查看更多 »

弗蘭茨·邁恩

弗兰茨·尤利乌斯·费迪南德·迈恩(Franz Julius Ferdinand Meyen,)是一位德國醫師、植物學家與鳥類學家。出生於東普魯士蒂爾西特(Tilsit,現在的蘇維埃茨克)。他在1830年所寫的《植物解剖學》(Phytotomie),是最早關於植物解剖學的回顧論文。.

新!!: 细胞核和弗蘭茨·邁恩 · 查看更多 »

弗朗茲·鮑爾

弗朗茲·鮑爾(Franz Andreas Bauer,)是一位奧地利植物畫家,在他的家族中也有多位畫家。他為許多植物構造與花朵繪製了精細的插圖,且其中包括一些顯微鏡下的圖像。.

新!!: 细胞核和弗朗茲·鮑爾 · 查看更多 »

信使RNA

#重定向 信使核糖核酸.

新!!: 细胞核和信使RNA · 查看更多 »

分子量

分子量,又称“相对分子质量”,指组成分子的所有原子的原子量的总和,分子量的符号为Mr。定义为物质分子或特定单元的平均质量与12C质量的1/12之比值。由于是相对值,所以为无量纲量,单位为1。.

新!!: 细胞核和分子量 · 查看更多 »

單磷酸腺苷

一磷酸腺苷(英文:Adenosine monophosphate,簡稱AMP),又名5'-腺嘌呤核苷酸或腺苷酸,是一種在核糖核酸(RNA)中發現的核苷酸。它是一種磷酸及核苷腺苷的酯,並由磷酸鹽官能團、戊糖核酸糖及鹼基腺嘌呤所組成。.

新!!: 细胞核和單磷酸腺苷 · 查看更多 »

單核球

#重定向 单核细胞.

新!!: 细胞核和單核球 · 查看更多 »

哺乳动物

哺乳动物是指脊椎动物亚门下哺乳綱(学名:Mammalia)的一类用肺呼吸空气的温血脊椎动物,因能通过乳腺分泌乳汁来给幼体哺乳而得名。 按照《世界哺乳动物物种》(Mammal Species of the World)一书在2005年的资料,哺乳纲目前有约5676个(2008版的IUCN红皮书为5488个)不同物种,分布在1229个属,153个科和29个目中,约占脊索动物门的10%,地球所有物种的0.4%。啮齿目(老鼠、豪猪、海狸、水豚等)、翼手目(蝙蝠等)和鼩形目(鼩鼱等)是哺乳动物中物种最多的目。 哺乳动物的身体结构复杂,有区别于其他类群的大脑结构、恒温系统和循环系统,具有为后代哺乳、大多数属于胎生、具有毛囊和汗腺等共通的外在特征。 它们外型多样,小至体长30毫米长有翅膀的凹脸蝠,大至体长33米形同鱼类的蓝鲸。它们有很好的环境适应能力,分布在从海洋到高山,从热带到极地的广泛区域。人类也是哺乳动物的一员。.

新!!: 细胞核和哺乳动物 · 查看更多 »

唐氏综合征

唐氏綜合症(21-三体综合征,先天愚型,英文:Down syndrome或Down's syndrome)又在部分地区被俗称为“国际脸”或“國際人”是因為21號染色體的三體現象造成的,常見症狀有發育遲緩、不同的面部以及輕度到中度的智能障礙。唐氏症青年人的智商大約接近八歲到九歲兒童的心智年齡,但也有些差異較大。 通常在遺傳學上,唐氏症候群患者父母基因正常,多餘染色體往往是偶然出現的。其出現概率隨生物學母親的年齡而增加,從20歲母親的小於0.1%至45歲母親的3%。至今為止仍不知道是否有會影響多餘染色體出現概率的行為或者環境因素。唐氏症候群可在孕期通過產前診斷,或在生產後通過觀察體徵與基因檢測被診斷出來。自從產前篩檢被應用於臨床後,被檢測出胎兒患有唐氏症候群的孕母往往選擇墮胎。一般推薦唐氏症候群患者終生定期檢查是否存在唐氏症候群的相關症狀。 目前唐氏症並無有效的治療方法,僅能透過生活照護及教育來改善患者的生活品質。有些患者於一般班級內接受教育,有些則接受特殊教育。有些患者甚至進而接受高等教育。唐氏症患者常需要財政及法務協助。在已開發國家中,若有接受妥當照護,唐氏症患者的預期壽命大約在50至60歲之間。 唐氏症是最常見的疾病之一。約每年每一千名新生兒就有一名。在2015年,有四百萬人罹患唐氏症,造成27000人死亡,較1990年因唐氏症而死亡的43000人要低。唐氏症得名自在1866年描述此病症症狀的英國醫師約翰·朗頓·唐,而吉恩·埃斯基羅爾(Jean-Étienne Dominique Esquirol及爱德华·塞金(Édouard Séguin)分別也在較早的1838年及1844年描述過唐氏症一些方面的特點。在1957年時發現了唐氏症在基因上的原因,也就是第21號染色體的三體現象。.

新!!: 细胞核和唐氏综合征 · 查看更多 »

內共生學說

#重定向 共生體學說.

新!!: 细胞核和內共生學說 · 查看更多 »

共生

共生一詞在英文或是希臘文,字面意義就是「共同」和「生活」,這是兩生物體之間生活在一起的交互作用,甚至包含不相似的生物體之間的吞噬行為。術語「宿主」通常被用來指共生關係中較大的成員,較小者稱為「共生體」。共生依照位置可以分為外共生、內共生,就外共生而言,共生體生活在宿主的表面,包括消化道的內表面或是外分泌腺體的導管;而在內共生,共生體生活在宿主的細胞內或是個體身體內部但是在細胞外都有可能,而20世紀末的科學家研究結果推測,細胞內的葉綠體和粒線體也可能是內共生的形式之一。 美國微生物學家瑪葛莉絲(L.

新!!: 细胞核和共生 · 查看更多 »

剪接體

剪接體(Spliceosome)是一種由RNA與蛋白質剪接體次單位所組成的超大型複合物,用來將mRNA序列中转录自DNA模板的內含子移除,並將剩餘的外顯子連接起來(此過程稱為剪接)。.

新!!: 细胞核和剪接體 · 查看更多 »

倫敦林奈學會

倫敦林奈學會(Linnean Society of London)是一個研究生物分類學的協會。出版動物學、植物學以及其他生物學期刊;同時也研究分類學此學門本身的歷史沿革。此學會建立於1788年,名稱是來自生物分類系統早期建立者、瑞典博物學家卡爾·林奈。地點位於倫敦皮卡迪里(Piccadilly)。 任何對學會研究感興趣的人都可以加入成為會員,其會員可分為學生會員(Student member)、準會員(Associate member)以及完全會員(full Fellow),三者的加入皆需要經由兩位會員的提名以及之後的選舉才能完成。.

新!!: 细胞核和倫敦林奈學會 · 查看更多 »

皮質醇

質醇(cortisol),,屬於腎上腺分泌的腎上腺皮質激素之中的糖皮質激素,在應付壓力中扮演重要角色,故又被稱為「壓力荷爾蒙」。皮質醇會提高血壓、血糖水平和產生免疫抑制作用。在藥理學,人工合成的皮質醇稱作氫羥腎上腺皮質素(hydrocortisone),除了補充皮質醇不足外,也會用作治療過敏症和發炎。最初被用作治療類風濕性關節炎時,皮質醇被稱作Compound E(化合物E)。.

新!!: 细胞核和皮質醇 · 查看更多 »

着絲粒

染色体着丝粒(centromere),又稱中節,主要作用是使复制的染色体在有丝分裂和减数分裂中可均等地分配到子细胞中。在很多高等真核生物中,着丝粒看起来像是在染色体一个点上的浓缩区域,这个区域包含着丝点(希腊语kínesis 運動;chóros 部位),又称主缢痕(primary constriction)。 着丝粒(染色体的主缢痕)为染色质的结构,将染色体分成二臂,在细胞分裂前期和中期,把两个姐妹染色单体连在一起,到后期两个染色单体的着丝粒分开。着丝粒两侧各有一个由蛋白质构成的3层盘状特化结构,为非染色体性质物质的附加物,称为着丝点。 在大部分真核生物中每个纺锤丝附着在不同的着丝粒上。如啤酒酵母(Saccharomyces cerevisiae)附着在每个着丝粒上仅一条纺锤丝。广义上說着丝粒也常指着丝点,然而狭义上的着丝点是將染色体和纺锤丝微管相結合的蛋白质复合体。 若着丝粒丢失了,那么染色体就失去了附着到纺锤丝上的能力,细胞分裂时染色体就会随机地进入子细胞。然而有着丝粒的染色体也会出现这种异常分配,那就是复制后的两个染色体拷贝并不总是正确地分离进入子细胞。在此过程中发生错误的概率通常是很低的。如在酵母中分配发生错误的概率低于十万分之一。若发生错误会引起染色体数目的改变。.

新!!: 细胞核和着絲粒 · 查看更多 »

离子

離子是指原子或原子基团失去或得到一个或几个电子而形成的带电荷的粒子。得失电子的过程称为电离,电离过程的能量变化可以用电离能来衡量。 在化学反应中,通常是金属元素原子失去最外层电子,非金属原子得到电子,从而使参加反应的原子或原子团带上电荷。带正电荷的原子叫做阳离子,带负电荷的原子叫做阴离子。通过阴、阳离子由于静电作用结合而形成不带电性的化合物,叫做离子化合物。 与分子、原子一样,离子也是构成物质的基本粒子。如氯化钠就是由氯离子和钠离子构成的。.

新!!: 细胞核和离子 · 查看更多 »

突變原

突變原(英語:Mutagen,又譯致變原、致突變原、致突變劑或誘變劑等)是指一些能使生物體內的遺傳訊息(通常是脫氧核糖核酸)發生變化的物理或化學因子。生物若處於這些因子的作用下,發生突變的機會將高於在一般自然狀況中。許多突變會造成癌症的發生,因此突變原很可能也是致癌物質。不過,並非所有突變皆因突變原而產生,在DNA複製、修復或重組過程中,也可能發生錯誤,進而導致突變。.

新!!: 细胞核和突變原 · 查看更多 »

端粒

端粒()是真核生物染色體末端的DNA重複序列,作用是保持染色體的完整性和控制細胞分裂週期。 由於DNA複製的機制,每次染色體複製後,上的染色體末端必無法被複製。因此,真核生物在染色體末端演化出端粒以作為可被重複遺棄的片段。一旦端粒消耗殆盡,細胞將會立即啟動凋亡機制。因此,端粒被推測和細胞老化有明顯的關係。人體的部分細胞,例如精原母細胞、癌症細胞等,含有端粒酶,能在DNA末端接上新的端粒片段,其端粒不會隨著分裂次數增加而縮短,因此能無限複製。.

新!!: 细胞核和端粒 · 查看更多 »

精子

精蟲或精子(spermatozoon、spermatozoön、複數 spermatozoa)是男性或其他雄性生物的生殖细胞。精子与卵子结合从而形成受精卵,进而发育为胚胎。精子最初由雷文霍克于1677年观察到。 对后代(二倍体)而言,精子细胞提供大约一半的遗传物质。在哺乳动物中,后代的性别由精子决定:含有Y染色体的精子受精后发育为男性/雄性后代(XY型),含有X染色体的精子受精后发育为女性/雌性后代(XX型),卵子只提供X染色体。.

新!!: 细胞核和精子 · 查看更多 »

糖酵解

糖酵解(glycolysis--是把葡萄糖(C6H12O6)转化成丙酮酸(CH3COCOO− + H+)的代谢途径。在这个过程中所释放的自由能被用于形成高能量化合物ATP和NADH。 糖解作用是所有生物细胞糖代谢過程的第一步。糖解作用是一个有10个步骤酶促反应的确定序列。在该过程中,一分子葡萄糖会经过十步酶促反应转变成两分子丙酮酸(严格来说,应该是丙酮酸盐,即是丙酮酸的阴离子形式)。 糖解作用及其各种变化形式发生在几乎所有的生物中,无论是有氧和厌氧。糖酵解的广泛发生显示它是最古老的已知的代谢途径之一。事实上,糖解作用及其并行途径戊糖磷酸途径,构成了反应,这些反应发生在还在不存在酶的条件下进行金属催化的太古宙海洋。糖解作用可能因此源于生命出现之前世界的化学约束。 糖解作用发生在大多数生物体中的细胞的胞质溶胶。最常见的和研究最彻底的糖解作用形式是双磷酸己糖降解途径(Embden-Meyerhof-Parnas途径,简称:EMP途径),这是被Gustav Embden,奥托·迈尔霍夫,和Jakub Karol Parnas所发现的。糖解作用也指的其他途径,例如,脱氧酮糖酸途径()各种异型的和同型的发酵途径,糖解作用一词可以用来概括所有这些途径。但是,在此处的讨论却是局限于双磷酸己糖降解途径(EMP途径)。 整个糖解作用途径可以分成两个阶段:.

新!!: 细胞核和糖酵解 · 查看更多 »

細胞器

细胞器(organelle,或稱--)是细胞的一部分, 是细胞中通过生物膜与细胞中其他部分分隔开来的、功能上独立的亚细胞结构,与细胞质基质和细胞骨架统称为“细胞质”。 细胞器可依各自拥有膜的层数大致分为三类(广义的細胞器还包括囊泡及核小体等):.

新!!: 细胞核和細胞器 · 查看更多 »

細胞質

細胞質是一種使細胞充滿的凝膠狀物質。細胞質包含有胞質溶膠及除細胞核外的細胞器。原生質是由水、鹽、有機分子及各種催化反應的酶所組成。細胞質在細胞內有著重要的角色,就是用作「分子液」,使各種細胞器能在其中懸浮及透過脂肪膜聚集一起。它在細胞膜內包圍著細胞核及細胞器。.

新!!: 细胞核和細胞質 · 查看更多 »

細胞週期

細胞週期(cell cycle),是指能持续分裂的真核细胞从一次有丝分裂结束后生长,再到下一次分裂结束的循环过程。細胞週期的长短反映了细胞所处状态,这是一个细胞物质积累与细胞分裂的循环过程。癌变的细胞以及特定阶段的胚胎细胞常常有异常的分裂週期。.

新!!: 细胞核和細胞週期 · 查看更多 »

線粒體

--(mitochondrion)是一种存在于大多数真核细胞中的由两层膜包被的细胞器,直径在0.5到10微米左右。除了溶组织内阿米巴、篮氏贾第鞭毛虫以及几种微孢子虫外,大多数真核细胞或多或少都拥有线粒体,但它们各自拥有的线粒体在大小、数量及外观等方面上都有所不同。这种细胞器拥有自身的遗传物质和遗传体系,但因其基因组大小有限,所以线粒体是一种半自主细胞器。线粒体是细胞内氧化磷酸化和合成三磷酸腺苷(ATP)的主要场所,为细胞的活动提供了化学能量,所以有“細胞的發電站”(the powerhouse of the cell)之称。除了为细胞供能外,线粒体还参与诸如细胞分化、细胞信息传递和细胞凋亡等过程,并拥有调控细胞生长和细胞周期的能力。 英文中的“线粒体”(mitochondrion,复数形式为“mitochondria”)一词是由希腊语中的“线”(“μίτος”或“mitos”)和“颗粒”(“χονδρίον”或“chondrion”)组合而成的。在“线粒体”这一名称出现前后,“粒体”“球状体”等众多名字曾先后或同时被使用。这些现在已不再继续使用的名称包括:blepharoblast、condriokont、chondriomite、chondrioplast、chondriosome、chondrioshere、filum、fuchsinophilic granule、interstitial body、körner、fädenkörner、mitogel、parabasal body、plasmasome、plastochondria、plastome、sphereoplast和vermicle等(按首字母在英文字母表中的顺序排列),其中“chondriosome”(可译为“颗粒体”)直至1982年仍见诸欧洲各国的科学文献。.

新!!: 细胞核和線粒體 · 查看更多 »

红血球

红血--球(Red blood cells (RBCs)),又称为红--细胞或血红--细胞,是血液中数量最多的一种血球,同时也是脊椎动物体内通过血液将氧气从肺或鰓运送到身体各个組织的最主要的媒介。破裂中的红血球或其碎片则称为裂红--细胞(schistocyte)。.

新!!: 细胞核和红血球 · 查看更多 »

细菌

細菌(学名:Bacteria)是生物的主要類群之一,屬於細菌域。也是所有生物中數量最多的一類,據估計,其總數約有5×1030個。細菌的個體非常小,目前已知最小的細菌只有0.2微米長,因此大多--能在顯微鏡下看到它們;而世界上最大的細菌可以用肉眼直接看見,有0.2-0.6毫米大,是一種叫納米比亞嗜硫珠菌的細菌。細菌一般是單細胞,細胞結構簡單,缺乏細胞核以及膜狀胞器,例如粒線體和葉綠體。基於這些特徵,細菌屬於原核生物。原核生物中還有另一類生物稱做古細菌,是科學家依據演化關係而另闢的類別。為了區別,本類生物也被稱做真細菌(Eubacteria)。古細菌與真細菌在生活環境、營養方式以及遺傳上有所不同。細菌的形狀相當多樣,主要有球狀、桿狀,以及螺旋狀。 細菌廣泛分佈於土壤和水中,或著與其他生物共生。人體身上也帶有相當多的細菌。據估計,人體內及表皮上的細菌細胞總數約是人體細胞總數的十倍。此外,也有部分種類分布在極端的環境中,例如溫泉,甚至是放射性廢棄物中,它們被歸類為嗜極生物,其中最著名的種類之一是海棲熱袍菌,科學家是在意大利的一座海底火山中發現這種細菌的。甚至在太空梭上也能生長。然而,細菌種類是如此多,科學家研究過並命名的種類只佔其中的小部份。細菌域下所有門中,只有約一半能在實驗室培養的種類。 細菌的營養方式有自养及异养,其中异养的腐生細菌是生态系统中重要的分解者,使碳循環能順利進行。部分細菌會進行固氮作用,使氮元素得以轉換為生物能利用的形式。細菌也對人類活動有很大的影響。一方面,細菌是許多疾病的病原體,包括肺結核、淋病、炭疽病、梅毒、鼠疫、砂眼等疾病都是由細菌所引發。然而,人類也時常利用細菌,例如乳酪及酸奶和酒釀的製作、部分抗生素的製造、廢水的處理等,都與細菌有關。在生物科技領域中,細菌有也著廣泛的運用。 總的來說,這世界上約有5×1030 隻細菌。其生物量遠大於世界上所有動植物體內細胞數量的總和。細菌還在營養素循環上扮演相當重要的角色,像是微生物造成的腐敗作用,就與氮循環相關。而在海底火山和在冷泉中,細菌則是靠硫化氫和甲烷來產生能量。2013年3月17日,研究者在深約11公里的馬里亞納海溝中發現了細菌。其他研究則指出,在美國西北邊離岸2600米的海床下580米深處,仍有許多的微生物根據這些研究人員的說法:「你可以在任何地方找到他們,他們的適應力遠比你想像的還要強,可以在任何地方存活。.

新!!: 细胞核和细菌 · 查看更多 »

细胞

细胞(Cell)是生物体结构和功能的基本单位。它是除了病毒之外所有具有完整生命力的生物的最小单位,也经常被称为生命的积木(病毒仅由DNA/RNA组成,并由蛋白质和脂肪包裹其外)。 in Chapter 21 of fourth edition, edited by Bruce Alberts (2002) published by Garland Science.

新!!: 细胞核和细胞 · 查看更多 »

细胞骨架

细胞骨架(Cytoskeleton)一般是指细胞内細胞質中的由蛋白质构成的纤维的网络结构。它是一个动态结构,其中有一部分是不断的被破坏,更新或新建的。 在生命的所有生物领域(古菌,细菌,真核生物)的细胞里都有细胞骨架被发现(特别是在所有真核细胞,包括人类,动物和植物细胞,甚至於噬菌體中都有細胞骨架被發現)。不同生物体的细胞骨架系统是由相似的蛋白质组成。但是,细胞骨架的结构,功能和动态行为可以是非常不同的,这取决于生物体和细胞类型。类似地,在同一细胞类型内细胞骨架的结构,动态行为和功能可以通过与其他蛋白质和网络的以前的历史关联发生变化。 细胞骨架的发现较晚,主要是因为一般電子顯微鏡制样采用低温(0-4℃)固定,而细胞骨架会在低温下解聚。直到20世纪60年代后,采用戊二醛常温固定,才逐渐认识到细胞骨架的客观存在。真核细胞借以维持其基本形态的重要结构,被形象地称为细胞骨架,它通常也被认为是广义上细胞器的一种。 细胞骨架不仅在维持细胞形态,承受外力、保持细胞内部结构的有序性方面起重要作用,而且还参与许多重要的生命活动,如:在细胞分裂中细胞骨架牵引染色体分离,在细胞物质运输中,各类小泡和细胞器可沿着细胞骨架定向转运;在肌肉细胞中,细胞骨架和它的结合蛋白组成动力系统;在白细胞(白血球)的迁移、精子的游动、神经细胞轴突和树突的伸展等方面都与细胞骨架有关。另外,在植物细胞中细胞骨架指导细胞壁的合成。 通过细胞骨架运行的一个大规模的例子是肌肉收缩。在肌肉收缩期间,肌肉的每一个细胞内肌球蛋白分子马达在并行肌动蛋白微丝上集体产生力量。这个行动收缩肌肉细胞,并通过在许多肌肉细胞的同步过程,收缩整个肌肉。.

新!!: 细胞核和细胞骨架 · 查看更多 »

罗伯特·布朗

罗伯特·布朗(Robert Brown,),19世纪英国植物学家,主要贡献是对澳洲植物的考察和发现了布朗运动。.

新!!: 细胞核和罗伯特·布朗 · 查看更多 »

羅伯特·雷馬克

羅伯特·雷馬克()是一位猶太裔德國的胚胎學家、生理學家與神經學家。出生於普魯士的波森。1833年進入柏林大學攻讀醫學。.

新!!: 细胞核和羅伯特·雷馬克 · 查看更多 »

真菌

真菌即真菌界(学名:Fungi)生物的通称,又稱菌物界,是真核生物中的一大類群,包含酵母、黴菌之類的微生物,及最為人熟知的菇類。真菌自成一界,與植物、動物和原生生物相區別。真菌和其他三種生物最大不同之處在於,真菌的細胞有含幾丁質為主要成分的細胞壁,而植物的細胞壁主要是由纖維素組成。卵菌和黏菌、水黴菌等在構造上和真菌相似,但都不屬於真菌,而是屬於原生生物。研究真菌的學科稱為真菌學,通常被視為植物學的一個分支。但事實顯示,真菌和動物之間的關係要比和植物之間更加親近。 雖然真菌遍及全世界,但大部分的真菌不顯眼,因為它們體積小,而且它們會生活在土壤內、腐質上、以及與植物、動物或其他真菌共生。部分菇類及黴菌可能會在結成孢子時變得較顯眼。真菌在有機物質的分解中扮演著極重要的角色,對養分的循環及交換有著基礎的作用。真菌從很久以前便被當做直接的食物來源(如菇類及松露)、麵包的膨鬆劑及發酵各種食品(如葡萄酒、啤酒及醬油)。1940年代後,真菌亦被用來製造抗生素,而現在,許多的酵素是由真菌所製造的,並運用在工業上。真菌亦被當做生物農藥,用來抑制雜草、植物疾病及害蟲。真菌中的許多物種會產生有的物質,稱為(如生物鹼和聚酮),對包括人類在內的動物有毒。一些物種的孢子含有精神藥物的成份,被用在娛樂及古代的宗教儀式上。真菌可以分解人造的物質及建物,並使人類及其他動物致病。因真菌病(如)或食物腐敗引起的作物損失會對人類的食物供給和區域經濟產生很大的影響。 真菌各門的物種之間不論是在生態、生物生命周期、及形態(從單細胞水生的壺菌到巨大的菇類)都有很巨大的差別。人類對真菌各門真正的生物多樣性了解得很少,預估約有150萬-500萬個物種,其中被正式分類的則只有約5%。自從18、19世紀,卡爾·林奈、克里斯蒂安·亨德里克·珀森及伊利阿斯·馬格努斯·弗里斯等人在分類學上有了開創性的研究成果之後,真菌便已依其形態(如孢子顏色或微觀構造等特徵)或依生理學給予分類。在分子遺傳學上的進展開啟了將DNA測序加入分類學的道路,這有時會挑戰傳統依形態及其他特徵分類的類群。最近十幾年來在系统发生学上的研究已幫助真菌界重新分類,共分為一個亞界、七個門、及十個亞門。.

新!!: 细胞核和真菌 · 查看更多 »

真染色質

真染色質(英文:Euchromatin,又譯同染色質或常染色质)是基因密度較低的染色質,多在细胞周期的S期进行复制,且通常具有轉錄活性,能夠生產蛋白質。真染色質在真核生物與原核生物的細胞中皆存在。與其相對而言,另一類通常無法轉錄成為蛋白質的染色質,則稱為異染色質(heterochromatin)。在細胞中,92%的人類基因體是真染色質,剩餘部分是異染色質。.

新!!: 细胞核和真染色質 · 查看更多 »

真核生物

真核生物(学名:Eukaryota)是其细胞具有细胞核的单细胞生物和多细胞生物的总称,它包括所有动物、植物、真菌和其他具有由膜包裹着的复杂亚细胞结构的生物。 真核生物与原核生物的根本性区别是前者的细胞内含有细胞核,因此以真核来命名这一类细胞。许多真核细胞中还含有其它细胞器,如粒線體、叶绿体、高尔基体等。 由于具有细胞核,因此真核细胞的细胞分裂过程与没有细胞核的原核生物也大不相同。 真核生物在进化上是单源性的,都属于三域系统中的真核生物域,另外两个域为同属于原核生物的细菌和古菌。但由于真核生物与古菌在一些生化性质和基因相关性上具有一定相似性,因此有时也将这两者共同归于新壁總域演化支。 科學家相信,從基因證據來看,真核生物是細菌與古菌的基因融合體,它是某種古菌與細菌共生,異種結合的產物。.

新!!: 细胞核和真核生物 · 查看更多 »

組織蛋白

組織蛋白(histone )是真核生物体细胞染色质中的碱性蛋白质,其将DNA包装和组织成被命名为核小体的结构单元。它们是染色质的主要蛋白质组分,作为DNA缠绕的线轴,并在中发挥作用。没有组织蛋白,染色体中未缠绕的DNA将非常长(人类DNA中的长宽比超过1000万比1)。例如,每个人类二倍体细胞(含有23对染色体)具有约1.8米长的DNA,但是在组織蛋白上缠绕它具有大约90微米(0.09毫米)的染色质,当在有丝分裂期间复制和浓缩时,其导致约120微米的染色体。.

新!!: 细胞核和組織蛋白 · 查看更多 »

痘病毒科

病毒(Poxviridae,pox.

新!!: 细胞核和痘病毒科 · 查看更多 »

炎症

症反應、炎性反應,俗稱發炎,是指具有血管系统的活体组织对致炎因子及局部损伤所发生的防御性为主的反应,中心环节是血管反应,是生物組織受到外傷、出血或病原感染等刺激,激發的生理反應。其中包括了紅腫、發熱、疼痛等症狀。炎性反應是先天免疫系統為移除有害刺激或病源體及促進修復的保護措施,並非如後天免疫系統般針對特定病源體。炎性反應並非等同於感染,即使很多時發炎是因感染而發生,發炎是生物體對病源體之反應之一。通常情况下,炎症是有益的,是人体的自动防御反应,但是有的时候,炎症可以引起人体自身免疫系統的過敏,進而攻击自身的組織及細胞、如類風濕性關節炎和紅斑狼瘡症等免疫系統過敏病症,免疫系統過敏所生成的COX-2及Interleukin-1 alpha使得軟骨組織疼痛及發炎。 長期發炎可引起一系列疾病,如花粉症、牙周炎、動脈粥樣硬化、類風濕性關節炎,甚至癌症(如膽囊癌),因此炎性反應在正常情況下受生物體緊密監控。 炎性反應可分為急性炎症和慢性炎症。急性炎症是生物體應該有害刺激的初步反應,更多的血漿和白血球(特別是粒細胞)從血液移往受損組織。一連串的生化反應進行傳播並促成進一步的炎性反應,當中牽涉局部的血管系統、免疫系統及受損組織內的各個細胞。慢性炎症引致發炎部位的細胞類型改變,組織的毀滅與修復同時進行。.

新!!: 细胞核和炎症 · 查看更多 »

生物化学

生物化学(biochemistry,也作 biological chemistry),顾名思义是研究生物体中的化学进程的一门学科,常常被简称为生化。它主要用于研究细胞内各组分,如蛋白质、糖类、脂类、核酸等生物大分子的结构和功能。而对于化学生物学来说,则着重于利用化学合成中的方法来解答生物化学所发现的相关问题。 虽然存在着大量不同的生物分子,但实际上有很多大的复合物分子(称为“聚合物”)是由相似的亚基(称为“单体”)结合在一起形成的。每一类生物聚合物分子都有自己的一套亚基类型。例如,蛋白质是由20种氨基酸所组成,而脱氧核糖核酸(DNA)由4种核苷酸构成。生物化学研究集中于重要生物分子的化学性质,特别着重于酶促反应的化学机理。 在生物化学研究中,对细胞代谢和内分泌系统的研究进行得相当深入。生物化学的其他研究领域包括遗传密码(DNA和RNA)、 蛋白质生物合成、跨膜运输(membrane transport)以及细胞信号转导。.

新!!: 细胞核和生物化学 · 查看更多 »

產甲烷作用

烷作用,又稱甲烷生成,指合成甲烷是微生物代謝的重要的和广泛的形式。可以生成甲烷的微生物稱作。這些微生物都屬於原核生物中的古菌域,这是在系统发生学上与真核生物和细菌都不同的一组独特的微生物,尽管它们是和厭氧细菌有靠近的关联。在很多環境中,這是生物质降解的最終步驟。.

新!!: 细胞核和產甲烷作用 · 查看更多 »

甾体激素

類固醇激素(英語:Steroid hormone、又稱甾体激素),是一类四环脂肪烃化合物,具有环戊烷多氢菲母核。.

新!!: 细胞核和甾体激素 · 查看更多 »

电子显微镜

電子顯微鏡(electron microscope,簡稱電鏡或電顯)是使用電子來展示物件的內部或表面的顯微鏡。 高速的電子的波長比可見光的波長短(波粒二象性),而顯微鏡的分辨率受其使用的波長的限制,因此電子顯微鏡的分辨率(約0.2奈米)遠高於光學顯微鏡的分辨率(約200奈米)。.

新!!: 细胞核和电子显微镜 · 查看更多 »

異染色質

染色質(英語:Heterochromatin)是DNA內一種緊密組合的結構,轉錄作用在其中受到限制。.

新!!: 细胞核和異染色質 · 查看更多 »

DNA聚合酶

DNA聚合酶(DNA Polymerase,EC編號2.7.7.7)是一種參與DNA複製的酶。它主要是以模板的形式,催化去氧核糖核苷酸的聚合。聚合後的分子將會組成模板鏈並再進一步參與配對。 DNA聚合酶以去氧核苷酸三磷酸(dATP、dCTP、dGTP、或dTTP,四者統稱dNTPs)為底物,沿模板的3'→5'方向,將對應的去氧核苷酸連接到新生DNA鏈的3'端,使新生鏈沿5'→3'方向延長。新鏈與原有的模板鏈序列互補,亦與模板鏈的原配對鏈序列一致。 已知的所有DNA聚合酶均以5'→3'方向合成DNA,且均不能「重新」(de novo)合成DNA,而只能將去氧核苷酸加到已有的RNA或DNA的3'端羥基上。因此,DNA聚合酶除了需要模板做為序列指導,也必需-zh-hans:引物; zh-hant:引子;-來起始合成。合成引物的酶叫做引發酶。 反應式:.

新!!: 细胞核和DNA聚合酶 · 查看更多 »

螺旋酶

螺旋酶(英語:Helicases,又譯解旋酶或解螺旋酶)是所有生物體維持生命所必需的一類酶,可分為多種類型。這類酵素是能夠依循核酸磷酸雙酯骨架(phosphodiester backbone)的方向性,而往特定方向移動的馬達蛋白(motor protein)。移動過程中可將相連的兩條核酸長鏈(如DNA、RNA或兩者的混合分子)解開,作用時所需能量來自核苷酸水解。 許多細胞代謝過程(cellular processes),如DNA複製,轉錄,翻譯,重組,DNA修復,和核糖體合成涉及的核酸鏈的分離必須使用解旋酶。.

新!!: 细胞核和螺旋酶 · 查看更多 »

選擇性剪接

選擇性剪接(Alternative splicing;又称“可变剪接”)是基因表达的方式,在複雜的動物例如人類细胞是非常普遍的。真核细胞的基因序列中,包含了內含子(intron)與外顯子(exon),兩者交互穿插。其中內含子在基因轉錄成mRNA前体後會被RNA剪接體移除,剩下的外顯子才是能夠存在於成熟mRNA(之後再進一步轉譯成蛋白質)的片段。 而選擇性剪接便是利用這樣的特性,一條未經剪接的RNA,含有的多種外顯子被剪成的不同組合,可轉譯出不同的蛋白質。就能將同一基因中的外顯子以不同的組合方式來表現,使一個基因在不同時間、不同環境中能夠製造出不同的蛋白質(基因表达调控),可增加生理狀況下系統的複雜性或適應性。例如抗體的製造。 Category:基因表現 Category:剪接体 Category:RNA剪接 fr:Épissage#Épissage alternatif it:Splicing#Splicing alternativo.

新!!: 细胞核和選擇性剪接 · 查看更多 »

遺傳物質

遺傳物質是生物用來儲存遺傳訊息的物質。目前已知的所有生物中,幾乎全部都以DNA為遺傳物質分子,少數如部份病毒,則以RNA作為遺傳物質。除此之外,過去科學家曾經以為生物的遺傳物質為蛋白質。確認DNA為遺傳物質的實驗為赫希-蔡斯實驗。 但也有科学家认为蛋白质也可以充当遗传物质,如仅由蛋白质构成的朊病毒。.

新!!: 细胞核和遺傳物質 · 查看更多 »

遺傳性疾病

遺傳性疾病是指以基因為主要致病原因的疾病。依據成因又可以細分成:單一基因缺陷的遺傳疾病、染色體變異所引起的遺傳疾病及由多重基因共同影響所造成的遺傳疾病及粒線體基因變異所引起的疾病。其中因單一基因缺陷而引起的遺傳疾病又稱為孟德爾型病症。臨床上大多透過遺傳基因檢測來輔助診斷以及帶因篩檢。.

新!!: 细胞核和遺傳性疾病 · 查看更多 »

菌根

菌根(希腊语:μυκός, mykós, "fungus",和ρίζα, riza, "root",,英语:mycorrhiza,复数形式mycorrhizae或mycorrhizas)指的是维管植物的根与真菌组成的共生关系体。 它菌根在土壤生物学和土壤化学中具有重要作用。 在菌根关系体中,真菌定殖于宿主植物的根,有的如丛枝菌根真菌(AMF或AM)那样定殖于根内,有的如外生菌根那样定殖于根的细胞外。该关系一般是互利共生的,但偶尔是弱致病性的。.

新!!: 细胞核和菌根 · 查看更多 »

鐮刀型紅血球疾病

鐮刀型紅血球疾病(Sickle-cell disease, SCD)是一組通常由雙親遺傳而來的血液疾病。其中最常見的一種類型,叫做鎌狀紅血球貧血症(Sickle-cell anaemia, SCA) -->。該疾病會引起紅血球中的載氧血紅蛋白異常。在某特定的情況下(通常是缺氧狀況),紅血球會變成堅硬的鐮刀型 。鐮刀狀紅血球疾病的問題通常會在五到六個月齡時發作 -->。患者可能會出現多項健康問題,例如突發的疼痛(鐮刀型貧血危機,sickle-cell crisis)、貧血、細菌感染與中風。當患者年紀稍長之後可能會出現慢性疼痛 -->。在已開發國家中的患者平均壽命為40到60歲。 鐮刀型紅血球疾病通常發病於擁有兩個不正常血紅素基因的人,從父母雙方各遺傳過來一個不正常的基因。突變的血紅素基因存在許多亞型,其分類取決於其基因的突變區域。當溫度改變,承受壓力,脫水或是處於高海拔時會出現身體不適的緊急症狀。如果只有一個不正常基因的人通常不會有鐮狀細胞的特徵。這類型的人通常被視為基因帶原者 。檢驗是否有鐮刀行紅血球疾病通常是藉由血液檢查得知,有些國家在新生兒出生之後便會進行檢驗 --> ,在懷孕時也有機會可以驗出胎兒是否有鐮刀型紅血球疾病。 照護鐮刀型紅血球疾病患者的方式包含疫苗和抗生素之使用、多喝水、補充葉酸以及止痛劑。其他方法包括輸血和羥基脲藥物。一小部分的人可以利用骨髓細胞移植來進行治療。 2013年之前,全球約有320萬人患有鐮型紅血球疾病;另外約有4300萬人具有鐮型紅血球疾病表徵。據信大約80%的鐮型紅血球疾病病例出現在撒哈拉沙漠以南的非洲。此外,印度部分區域、阿拉伯半島以及世界各地的非裔地區也是經常有病例出現的地方。在1990年,此疾病造成11萬3千人死亡,到了2013,此疾病已經造成17萬6千的人口死亡 。此疾病最初是記載在1910年美國醫師詹姆斯·赫里克所寫的醫學文獻 。1949年,此病的遺傳現象被E.

新!!: 细胞核和鐮刀型紅血球疾病 · 查看更多 »

表型

表型(Phenotype),又称表現型,对于一個生物而言,表示它某一特定的物理外觀或成分。一個人是否有耳珠、植物的高度、人的血型、蛾的顏色等等,都是表型的例子。 表型主要受生物的基因型和環境影響,表型可分為連續變異或不連續變異的。前者較易受環境因素影響,基因型上則會受多個等位基因影響,如體重、智力和身高;後者僅受幾個等位基因影響,而且很少會被環境改變,如血型、眼睛顏色和捲舌的能力。對於不連續變異,若有兩個生物表現型相同,其基因型未必一樣,這是因為其中一方可能有隱性基因。 表型變異是進化論物競天擇理論成立的重要條件。早期的遺傳學家欠缺分子生物學技術,無從直接觀察DNA構造,生物和其後代的表型就是他們判別其基因型的工具。.

新!!: 细胞核和表型 · 查看更多 »

馬蒂亞斯·雅各布·施萊登

蒂亞斯·雅各布·許萊登(Matthias Jakob Schleiden,)是一位德國植物學家,細胞學說的建立者之一。他出生於德國漢堡,大學時原本研讀法律,但後來轉向其興趣植物學。 他喜歡使用顯微鏡來觀察植物的結構,他在擔任耶拿大學教授時,紀錄了植物不同部位是由細胞所構成的現象。後來他也辨識出1831年時由植物學家羅伯特·布朗所發現的細胞核。.

新!!: 细胞核和馬蒂亞斯·雅各布·施萊登 · 查看更多 »

骨骼肌

肌是一种肌组织。此外心肌和平滑肌亦属于肌组织。 肌肉中的肌细胞又称肌纤维,而骨骼肌的肌细胞属于多核细胞,有几十个甚至上百个呈扁椭圆形的细胞核。骨骼肌纤维呈长圆柱状,直径10~100微米;长度不等,一般为1~40毫米,甚至可达10厘米以上。 骨骼肌属于横纹肌的一种(此外心肌亦属于横纹肌)。此外骨骼肌属于随意肌(心肌和平滑肌则属于不随意肌),即其收缩运动受人的意识支配,经躯体神经刺激实现的。而骨骼肌通常是通过肌腱附在骨骼的两端,其伸缩可以带动骨骼的移动,以促成人体的运动。骨骼肌负责支配人的基本活动,其中包括屈曲和伸展。.

新!!: 细胞核和骨骼肌 · 查看更多 »

骨髓

髓(bone marrow)位於較大骨骼的腔中,佔人體體重的4-6%,含有造血幹細胞以及多種其他的幹細胞,他們可以分化產生不同的組織。骨髓是重要的造血及免疫器官。血液的所有細胞成分都來源於造血幹細胞,其中髓系細胞(紅細胞系、粒細胞系、單核細胞系與巨核細胞-血小板系)是完全在骨髓內分化生成的;淋巴系細胞(T細胞與B細胞)的發育前期是在骨髓內完成;另外B細胞分化為漿細胞後,也回到骨髓,並在這裡大量產生抗體。通常人體在穩定狀況下,每小時約有1010個紅細胞與108-109個白細胞生成,以維持外周血循環中血細胞的組成與數量。.

新!!: 细胞核和骨髓 · 查看更多 »

高分子

分子(Macromolecule)化合物是一個非常大的分子,如蛋白質,通常由較小的亞基(單體)的聚合產生。它們一般由數千或更多的原子組成。通过一定形式的聚合反应生成具有非常高的分子量的大分子,一般指聚合物和结构上包括聚合物的分子。在生物化学中,这个术语被应用于三个传统的生物聚合物(核酸、蛋白质、和碳水化合物),以及具有大分子量的非聚合分子,例如脂类和。这些分子有时也被称为生物大分子。 聚合物高分子的各个构成分子被称为单体。 人工合成的高分子包括塑料。金属和晶体虽然也是由许多原子组成的,其内部通过类似分子的键联合在一起,但是它们一般不被认为是高分子。有时不同的高分子之间通过分子间力(但不是通过化学键)组合到一起,尤其是假如这样的组合是自然发生的,而且其组成部分一般不单独出现的话,那么这样的混合物也会被称为高分子。实际上这样的混合物更应该被称为高分子复合物。在这种情况下组成这个复合物的单个高分子往往被称为下单位。由高分子组成的物质往往有不寻常的物理特性。液晶和橡胶就是很好的例子。许多高分子在水中需要特殊的小分子帮助才能溶解。许多需要盐或者特殊的离子来溶解。.

新!!: 细胞核和高分子 · 查看更多 »

鲁道夫·菲尔绍

鲁道夫·路德维希·卡尔·菲尔绍(Rudolf Ludwig Karl Virchow,),德国医生、人类学家、病理学家、史前学家、生物学家、作家、编辑和政治家。.

新!!: 细胞核和鲁道夫·菲尔绍 · 查看更多 »

转录

转录()是遗传信息由DNA转换到RNA的过程。作为蛋白质生物合成的第一步,转录是mRNA以及非編碼RNA(tRNA、rRNA等)的合成步骤。 转录中,一段基因会被读取、複製为mRNA;就是说一特定的DNA片段作为模板,以DNA依赖的核糖核酸聚合酶(RNA聚合酶或RNA合成酶)作为催化剂而合成前mRNA的过程。 转录尚有未清楚的部分,例如是否需要DNA解旋酶,一般来说是需要的,但某些地区称RNA聚合酶可代替其行使识别DNA上的有关碱基以开始转录的功能。 mRNA转录时,DNA分子双链打开,在RNA聚合酶的作用下,游离的4种核糖核苷酸按照碱基互补配对原则结合到DNA单链上,并在RNA聚合酶的作用下形成单链mRNA分子。至此,转录完成。 转录通常是多起点多向复制。 转录时所转录的仅为DNA上有遗传效应的片段(DNA),不包括内含子。 转录按以下一般步骤进行:.

新!!: 细胞核和转录 · 查看更多 »

转录后修饰

转录后修饰(RNA修飾,或稱修飾RNA)是真核细胞中,将初级转录RNA转化为成熟RNA的加工过程。一个很好的例子就是前mRNA转化为成熟的mRNA,其中包括剪接,并发生在蛋白质生物合成之前。这一加工过程对于真核生物基因组的正确翻译至关重要,这是因为真核生物的初级转录RNA中包含既包括用于编码蛋白质的外显子又包含非编码的內含子。.

新!!: 细胞核和转录后修饰 · 查看更多 »

转录因子

在分子生物学中,转录因子(英語:Transcription factor)是指能够结合在某基因上游特异核苷酸序列上的蛋白质,这些蛋白质能调控其基因的转录。转录因子可以调控核糖核酸聚合酶(RNA聚合酶,或叫RNA合成酶)与DNA模板的结合。转录因子一般有不同的功能区域,如DNA结合结构域与效应结构域。转录因子不单与基因上游的启动子区域结合,也可以和其它转录因子形成转录因子复合体来影响基因的转录。 转录因子是与DNA特异性结合的一系列蛋白质。结合在DNA上的启动子以及增强子之类控制转录的区域上,促进或者抑制DNA上的遗传信息向RNA转录的过程。转录因子的这一机能可以单独,或者通过与其它蛋白质形成复合体来完成。人类的基因组上已经推定出大约1800个基因控制转录因子的编码。.

新!!: 细胞核和转录因子 · 查看更多 »

软体动物

软体动物门(学名:Mollusca)屬於無脊椎動物,就其物種多樣性而言,是动物界的第二大門,僅次於節肢動物門,其已確認的物種數量估算從8.5萬種到十萬多種 不等。软体动物能適應許多不同環境,分布广泛,从寒带、温带到热带,从海洋到河川、湖泊,从平原到高山,陆地、淡水和咸水多種棲息地中都有大量成员,例如蜗牛、河蚌、海螺、乌贼等物種。而在海洋生物當中,比重佔23%的軟體動物更在所有動物排第一位。 軟體動物型態、習性差異甚大,最大的软体动物大王乌贼的腕展开可达12公尺 ,最小的螺类卻僅有1厘米長。但是牠們有共同的基本特征,身体無內骨骼且軟,大多数不分节,身體結構可分為头、足、内脏团和外套膜4个部分。部分軟體動物的外套膜會分泌出钙质的硬壳保护身体。外套模的形狀因種類而不同。除了成年期的腹足动物之外,軟體動物的的壳体都是左右对称的。 软体动物大多有壳,如田螺、文蛤等貝類;少數在陸地上的則有蜗牛、蛞蝓;章鱼、烏賊、海蛞蝓的外殼已消失;软体动物多数靠一条肉脚向前滑动,以此移动自己的身体,很多都有一个盘绕的外壳来保护蜗在里面的柔软的身体。.

新!!: 细胞核和软体动物 · 查看更多 »

轉譯

#重定向 翻譯 (生物學).

新!!: 细胞核和轉譯 · 查看更多 »

蘭科

蘭科(学名:Orchidaceae)植物俗称蘭花,亦叫胡姬花,是開花植物中世界性分布和具多樣性的科,与开花常常是五颜六色的和常常芬芳的,通常俗名称为蘭花科。 蘭科现在大约有已经接受的28,000个物種,分布在有736屬中 (See External links below).

新!!: 细胞核和蘭科 · 查看更多 »

間期

期是细胞周期的历时最长的阶段,在该阶段中细胞增加尺寸并复制其DNA。间期也被认为是细胞的“生活”阶段,此阶段细胞吸收营养,成长并执行“一般”细胞的功能。大多数真核细胞长时间都处于间期。间期时细胞并不处于休止状态,细胞在此时积极地为细胞分裂做准备。间期有时被误解为有丝分裂的第一个阶段,但实际上前期才是有丝分裂的第一个阶段。 间期中,细胞做好了有丝分裂或减数分裂的准备。体细胞或生物体的二倍体细胞通过有丝分裂完成细胞分裂进而复制自身。二倍体生殖细胞通过减数分裂生成配子以进行有性繁殖。.

新!!: 细胞核和間期 · 查看更多 »

葡萄糖

葡萄糖(法语、德语、英語:glucose;又称血糖、玉米葡糖、玉蜀黍糖)是自然界分布最广、且最为重要的一種单糖。 因為擁有6個碳原子,被歸為己糖或六碳糖。葡萄糖是一种多羟基醛,分子式為C6H12O6。其水溶液旋光向右,故亦称“右旋糖”。葡萄糖在生物学领域具有重要地位,是活細胞的能量來源和新陳代謝的中间产物。植物可通过行光合作用產生葡萄糖。.

新!!: 细胞核和葡萄糖 · 查看更多 »

葡萄糖-6-磷酸

葡萄糖-6-磷酸(英語:Glucose 6-phosphate),也称6-磷酸葡萄糖,是葡萄糖經過磷酸化(在第6号碳)之後生成的分子。它也是生物細胞中的常見分子,參與磷酸戊糖途径與糖酵解等生化途徑。 在糖酵解中,這個分子是由第一個步驟形成,進行催化的酶是己糖激酶或其他類似的酶。葡萄糖-6-磷酸在糖酵解中,會經由磷酸葡萄糖異構酶的催化,而形成果糖-6-磷酸,以繼續接下來的步驟。 Category:磷酸酯 Category:单糖衍生物.

新!!: 细胞核和葡萄糖-6-磷酸 · 查看更多 »

肺是很多进行空气呼吸的动物的呼吸系统中重要的一个器官,大部分四足类动物、一些鱼类和蜗牛都有肺。哺乳动物和其他身体结构较为复杂的动物则拥有两个肺,其位于胸腔中靠近脊柱,并分别位于心脏的左右两侧。 肺的主要功能是将氧气从空氣运输到血液中,并将二氧化碳从血液中排出至大气中。气体交换过程是在一种特殊细胞中进行的,而这些细胞是由成千上万的微小薄壁泡囊组成的,这些微小泡囊被称作"肺泡"。 为了能够完整解释肺部的结构,需要首先对从口腔到肺泡的这一呼吸道进行讨论。当空气通过嘴或者鼻子被吸入后,会通过咽、喉头、气管和逐渐分化的支气管和小支气管,并最终到达肺泡,在那里将发生二氧化碳和氧气的气体交换过程。 空气的呼入与排出(也称换气)是由肌肉进行控制和驱动的。在早期的四足类动物中,空气是由咽部肌肉通过泵抽的形式被驱动的,而爬行动物、鸟类和哺乳动物则使用一个更为复杂的肌肉骨骼系统。 与肺相关的英语医学术语通常都以pulmo-作为词根,这个词根来自于拉丁语pulmonarius,意为“肺部的”;或者以pneumo-作为词根,这个词根来自于希腊语πνεύμων,意思为“肺”。.

新!!: 细胞核和肺 · 查看更多 »

肌动蛋白

肌动蛋白(actin)是一类分子量大约在42,000的球状蛋白质。除了线虫类精子细胞,在所有的真核细胞当中均发现有该蛋白质,浓度约在100μM以上。肌动蛋白是生物体中微丝的两个单体亚基之一,而微丝则是细胞骨架三大组成结构之一,肌动蛋白还构成了肌细胞中具有收缩功能的组织。所以,肌动蛋白对于细胞活动起到很大的作用,比如肌肉的收缩,细胞的转移、分裂和原质的流动,动物胞囊和器官的运动,细胞间信息的传递,以及细胞的形状和连结的建立和维持等等。 有许多疾病是由调控肌动蛋白基因表达活性的蛋白及其相关蛋白的等位基因突变引起的。肌动蛋白基因表达也是一些病原微生物感染过程中的关键因素。一些肌动蛋白调孔蛋白的突变会导致,包括心脏大小与功能的变化以及耳聋等。细胞骨架的组装也与细胞内细菌与病毒的致病性有关,特别是在逃避免疫系统作用有关的过程中。.

新!!: 细胞核和肌动蛋白 · 查看更多 »

肌細胞

肌肉細胞也稱為肌肉纖維,可以在肌肉組織中見到,這些細胞型態上屬於長型且管狀,肌肉細胞是從肌肉母細胞發育而來。經過肌肉生成後肌肉細胞會特化成數種型態,包括骨骼肌、平滑肌、心肌,這些肌肉各司其職,負責不同的類型。骨骼肌負責人體的運動;心肌主要負責心臟的搏動、全身血液循環。平滑肌則和人類腸道活動有關。.

新!!: 细胞核和肌細胞 · 查看更多 »

脱氧核糖核酸

--氧核醣核酸(deoxyribonucleic acid,縮寫:DNA)又稱--氧核醣核酸,是一種生物大分子,可組成遺傳指令,引導生物發育與生命機能運作。主要功能是資訊儲存,可比喻為「藍圖」或「配方」。其中包含的指令,是建構細胞內其他的化合物,如蛋白質與核醣核酸所需。帶有蛋白質編碼的DNA片段稱為基因。其他的DNA序列,有些直接以本身構造發揮作用,有些則參與調控遺傳訊息的表現。 DNA是一種長鏈聚合物,組成單位稱為核苷酸,而糖類與磷酸藉由酯鍵相連,組成其長鏈骨架。每個糖單位都與四種鹼基裡的其中一種相接,這些鹼基沿著DNA長鏈所排列而成的序列,可組成遺傳密碼,是蛋白質氨基酸序列合成的依據。讀取密碼的過程稱為轉錄,是根據DNA序列複製出一段稱為RNA的核酸分子。多數RNA帶有合成蛋白質的訊息,另有一些本身就擁有特殊功能,例如核糖體RNA、小核RNA與小干擾RNA。 在細胞內,DNA能組織成染色體結構,整組染色體則統稱為基因組。染色體在細胞分裂之前會先行複製,此過程稱為DNA複製。對真核生物,如動物、植物及真菌而言,染色體是存放於細胞核內;對於原核生物而言,如細菌,則是存放在細胞質中的拟核裡。染色體上的染色質蛋白,如組織蛋白,能夠將DNA組織並壓縮,以幫助DNA與其他蛋白質進行交互作用,進而調節基因的轉錄。.

新!!: 细胞核和脱氧核糖核酸 · 查看更多 »

醛固酮

醛固酮(Aldosterone)是一種類固醇類激素(盐皮质激素家族),由腎上腺皮質所產生,主要作用於腎臟,進行鈉離子及水份的再吸收,以維持血壓的穩定。整體來說,醛固酮為一種增進腎臟對於離子及水分再吸收作用的一種激素,為肾素-血管紧张素系统的一部分。.

新!!: 细胞核和醛固酮 · 查看更多 »

自體免疫疾病

#重定向 自體免疫性疾病.

新!!: 细胞核和自體免疫疾病 · 查看更多 »

配體 (生物化學)

在生物化學和藥理學中,配體(ligand)是指一種能與受体結合以產生某種生理效果的物質。在蛋白質—配體複合物中,配體通常是與靶蛋白特定結合位點相連的信號觸發分子。而在DNA—配體複合物中,與DNA雙鏈相連的配體在一般情況下可以是任何的小分子或離子甚至是蛋白質。值得注意的是,生物化學中的配體和化學中定義的配體(比如銅氨絡離子中,氨是銅離子的配體)並無實際聯繫,配體未必要結合在金属原子上。 配體與受體的連接由諸如離子鍵的化學鍵或氫鍵、范德華力等分子間作用力維繫。它們的連接過程通常是可逆的,配體與受體之間形成的真正難以斷開的共價鍵在生物界是相當罕見的。 配體在與受體結合後,可以改變它們的立體構型,而立體構型又常常決定了蛋白質的功能。配體包括底物、酶抑制劑、酶激活劑、以及神經遞質。配體與受體結合的難易度與結合後的強度叫做親和力。兩者越容易結合,結合後結合的強度越大,則親和力越強,反之亦然。親和力不僅由配體和受體間的直接的相互作用決定,還由溶劑效應決定,后者間接主導溶液中的非共價性結合。 用放射性同位素標記的已被用作正電子發射計算機斷層掃描(PET)中的放射性示蹤劑。此外,這種物質還被用於在體外進行的配體—受體結合研究。.

新!!: 细胞核和配體 (生物化學) · 查看更多 »

蛋白質一級結構

蛋白质一级结构(Protein primary structure)是肽或蛋白质中氨基酸的线性序列。按照惯例,蛋白质的一级结构被报道从氨基末端(N)端到羧基末端(C)端。蛋白质生物合成最通常由细胞中的核糖体进行。肽也可以在实验室中合成。蛋白质一级结构可以被直接测序,或从DNA序列推断。 在生物化學裡,生物分子的一級結構是其分子組成和分子間化學鍵結的精確模樣。對於一典型的無分支、無交叉的生物聚合物(如DNA、RNA或典型的細胞內蛋白質等分子),其第一結構等同於描述其單體單位的序列,即如DNA序列和肽序列。「一級結構」這一名詞在Linderstrom-Lang於1951年的Lane Medical Lectures上首次被提到。一級結構和一級序列有一點相似,即使在二級或三級結構中並沒有平行的概念。.

新!!: 细胞核和蛋白質一級結構 · 查看更多 »

蛋白质

蛋白质(protein,旧称“朊”)是大型生物分子,或高分子,它由一个或多个由氨基酸残基组成的长链条组成。氨基酸分子呈线性排列,相邻氨基酸残基的羧基和氨基通过肽键连接在一起。蛋白质的氨基酸序列是由对应基因所编码。除了遗传密码所编码的20种“标准”氨基酸,在蛋白质中,某些氨基酸残基还可以被改變原子的排序而发生化学结构的变化,从而对蛋白质进行激活或调控。多个蛋白质可以一起,往往是通过结合在一起形成稳定的蛋白质复合物,发挥某一特定功能。 与其他生物大分子(如多糖和核酸)一样,蛋白质是地球上生物体中的必要组成成分,参与了细胞生命活动的每一个进程。酶是最常见的一类蛋白质,它们催化生物化学反应,尤其对于生物体的代谢至关重要。除了酶之外,还有许多结构性或机械性蛋白质,如肌肉中的肌动蛋白和肌球蛋白,以及细胞骨架中的微管蛋白(参与形成细胞内的支撑网络以维持细胞外形)。另外一些蛋白质则参与细胞信号传导、免疫反应、细胞黏附和细胞周期调控等。同时,蛋白质也是动物饮食中必需的营养物质,这是因为动物自身无法合成所有氨基酸,动物需要和必须从食物中获取必需氨基酸。通过消化过程将蛋白质降解为自由氨基酸,动物就可以将它们用于自身的代谢。.

新!!: 细胞核和蛋白质 · 查看更多 »

G蛋白

G蛋白(英語:G Protein)是指鸟苷酸结合蛋白(guanine nucleotide-binding proteins)。它含有一个鸟苷酸结合结构域,由α、β、γ三个亚基组成。激活状态下的G蛋白可以激活腺苷酸环化酶,产生第二信使cAMP,从而产生进一步的生物学效应。.

新!!: 细胞核和G蛋白 · 查看更多 »

MRNA

#重定向 信使核糖核酸.

新!!: 细胞核和MRNA · 查看更多 »

NF-κB

核因子活化B细胞κ轻链增强子(英語:nuclear factor kappa-light-chain-enhancer of activated B cells,简称为NF-κB)是一种控制DNA转录的蛋白复合体。NF-κB几乎存在于所有类型的动物细胞中并参与细胞对诸多刺激的响应,这些刺激包括应激、细胞因子、自由基、紫外线照射、氧化LDL及细菌或病毒抗原。在针对感染的免疫反应中,NF-κB起到了重要的调节作用(κ轻链是免疫球蛋白的重要组成部分)。NF-κB的调控失常与癌症、炎症和自身免疫病、感染性休克、病毒感染以及免疫发育异常有关。NF-κB亦与突触可塑性及记忆过程有着密切关系.

新!!: 细胞核和NF-κB · 查看更多 »

RNA剪接

剪接(splicing,又稱拼接),是一种基因重组現象,在分子生物學中,主要是指細胞核內基因資訊在轉錄過程中或是在轉錄過後的一种修飾,即將內含子移除及合併外顯子——內含子與外顯子的名稱是通用於編碼基因的DNA及其轉錄後的RNA——是真核生物的前mRNA變成mRNA的過程之一。剪接過程是剪接體內核糖核酸(RNA)核苷酸之間的一連串生化反應,並由剪接體內小核核糖蛋白(snRNP)中的snRNA負責催化並作用。此外,也有一些類型不需外在催化物質,而是在特定二價金屬離子存在的情況下,以RNA自我催化的方式進行剪接,如第一型或第二型內含子 (group-I or group-II intron)或核酸酶(ribozyme)。這也是真核生物與原核生物的区别之一(请参看顺反子)。成熟的mRNA會接著進行蛋白質生物合成中的翻譯,以產生蛋白質,稱轉譯作用。.

新!!: 细胞核和RNA剪接 · 查看更多 »

RNA聚合酶

RNA聚合酶(RNA polymerase、RNAP、RNApol、DNA-dependent RNA polymerase,EC2.7.7.6)或稱核糖核酸聚合酶,是一種負責從DNA或RNA模板製造RNA的酶。RNA聚合酶是通過稱為轉錄的過程來建立RNA鏈,以完成這個工程。在科學上,RNA聚合酶是一個在RNA轉錄本3'端聚合核糖核甘酸的核苷轉移酶。RNA聚合酶是一種非常重要的酶,且可在所有生物、細胞及多種病毒中可見。 RNA聚合酶是於1960年分別由山姆·懷斯及霍維茲同時發現。但在此之前,於1959年,諾貝爾獎頒發給了塞韋羅·奧喬亞,因為他的發現當時認為是RNA聚合酶,但其實是核糖核酸酶。.

新!!: 细胞核和RNA聚合酶 · 查看更多 »

TNF-α

#重定向 肿瘤坏死因子-α.

新!!: 细胞核和TNF-α · 查看更多 »

染色体

-- 染色體(chromosome)是真核生物特有的構造,主要由雙股螺旋的脱氧核糖核酸和5种被称为组蛋白的蛋白质构成,是基因的主要載體。染色体是细胞内具有遗传性质的遗传物质深度压缩形成的聚合体,易被碱性染料染成深色,所以叫染色体(由染色质组成)。染色质和染色体是同一物质在细胞分裂间期和分裂期的不同形态表现。染色体出现于分裂期。染色质出现于间期,呈丝状。其本质都是脱氧核糖核酸(DNA)和蛋白质的组合(即核蛋白组成的),不均匀地分布于细胞核中 ,是遗传信息(基因)的主要载体,但不是唯一载体(如细胞质内的線粒体)。.

新!!: 细胞核和染色体 · 查看更多 »

染色质

染色質(Chromatin,或称核染質)是在細胞中發現的大分子復合物,由DNA,蛋白質和RNA組成。它也是構成染色體的結構。染色質的主要功能是1)將DNA包裝成更緊湊,更緻密的形狀; 2)增強DNA大分子以允許有絲分裂; 3)防止DNA損傷; 4)控制基因表達和DNA複製。 染色質的主要蛋白質組件是緻密DNA的組織蛋白。 染色質僅在真核細胞(具有確定的細胞核的細胞)中發現。 原核細胞具有不同的DNA組織(原核染色體等同物稱為拟核,並且位於類核區內)。真核細胞的核染質位在細胞核內;原核生物的則位於類核(nucleoid)當中。 儘管經過深入調查,但目前對染色質的結構了解甚少。 其結構取決於幾個因素。 整體結構取決於細胞週期的階段。 在間期,染色質在結構上是鬆散的,以允許獲得轉錄和復制DNA的RNA和DNA聚合酶。 間期染色質的局部結構取決於DNA上存在的基因。.

新!!: 细胞核和染色质 · 查看更多 »

染料

染料是有颜色的物质但有颜色的物质并不一定是染料。作为染整工業基礎,必须能够使一定颜色附着在纤维上。且不易脱落、变色。染料通常溶於水中,一部份的染料需要媒染劑使染料能黏著於纖維上。 染料和色素吸收部份波長的光,所以看起來帶有顏色。與染料比較,色素並不溶於水中,亦不會附著於其他物質上。 考古資料顯示,染色技術於印度和中東已有超過五千年歷史。當時的染料從動植物或礦物質而來,甚少經過處理。大多數染料來自植物界(如植物的根、莓類、樹皮、葉子和木料等),但此類染料甚少被廣泛用於商業上。 第一種人造的有機染料苯胺紫(mauveine)由威廉·珀金(William Henry Perkin)於一八五六年發明。其後共有上千種染料被發明出來。.

新!!: 细胞核和染料 · 查看更多 »

果糖-6-磷酸

果糖6-磷酸(英語:fructose 6-phosphate)是生物體內的常見分子之一,也是糖解作用的過程中所生成的產物之一,屬於酮糖。 在糖解作用中,果糖6-磷酸是葡萄糖6-磷酸在磷酸葡萄糖異構酶(英語:Phosphoglucose isomerase)的催化之下所形成;之後又會經由磷酸果糖激酶(英語:Phosphofructokinase)的催化,以及消耗一個ATP,生成果糖1,6-雙磷酸,是糖解作用中的第二次磷酸化作用。.

新!!: 细胞核和果糖-6-磷酸 · 查看更多 »

核孔

核孔是镶嵌在真核细胞细胞核核膜中的一种复合物,是细胞核与细胞质间物质交流的通道。细胞核内合成的RNA、大多蛋白质与核糖体等进入细胞质的需通过核孔进入细胞质,而细胞质中的大分子物质也需经过核孔进入细胞核。脊椎动物细胞的核膜上平均拥有约2000個核孔,但核孔的数量也會根據細胞轉錄活动的旺盛程度的改变而发生變化。 组成核孔的蛋白质是核孔素。约有一半的核孔素典型地包含α螺旋和β螺旋團,或包含結構域,因为另外一半的一级结构中包含许多重复的縮氨酸、苯丙氨酸及甘氨酸,所以这一半表現出蛋白質自然發展所形成的典型結構特徵,亦即缺少整齊次組織的高度彎曲蛋白質,這些发生病变的蛋白質称作細粒核孔素。 核孔允許載有水溶性分子的運輸工具通過核膜。這些運輸工具包括從細胞核输出到細胞質中的RNA或進入細胞核的蛋白質(例如:DNA聚合酶及核纤层蛋白)、糖类和脂质。 核孔可以主動引導复合物每秒移動一千次。雖然小分子可以直接以擴散作用通過核膜,但大分子必須被特別的信號序列识别,然後才能在某些蛋白質的辅助下進出細胞核,這也就是所谓的“運行週期”。每八單位圍繞在實際核孔周围的蛋白質會使進入的孔通道按照蛋白質輪廓突出,而在核孔中心往往會出現由類似塞子的結構,但对这种结构的作用仍不明晰。.

新!!: 细胞核和核孔 · 查看更多 »

核孔蛋白

核孔蛋白(nucleoporins)是一类蛋白质家族,作为构成核孔复合物的砖块。核孔复合物是长度纵穿整个核被膜的巨大结构物,形成了细胞核与细胞质之间调控高分子流动的峡口。核孔蛋白家族包含了50~100种蛋白质,是真核细胞核孔复合物的主要构成部分。核孔可允许水溶性分子转运穿过核被膜。 该家族包含的蛋白质根据其分子量(千道)而得名,列表:.

新!!: 细胞核和核孔蛋白 · 查看更多 »

核小體

核小體(Nucleosome,也译作核體或核仁小體等)是組成真核生物染色質(除精子染色質外)的基本單位。 核小体是由DNA與4對組織蛋白(共8個)组成的複合物,其中有H2A和H2B的二聚體兩組以及H3和H4的二聚體兩組。另外還有一種H1負責連結兩個核小體之間的DNA。 核小體假說是在1974年,由Don Olins、Ada Olins與羅傑·科恩伯格等人首次提出的。.

新!!: 细胞核和核小體 · 查看更多 »

核仁

核仁(nucleolus,複數形式爲nucleoli)是真核細胞細胞核中的一種結構,通過電子顯微鏡乃至光學顯微鏡可以觀察到細胞核中的核仁呈均勻的球狀。核仁是核糖體RNA(rRNA)轉錄及加工、核糖體亞基進行組裝的場所。另外,核仁也有輸出、降解mRNA等功能。核仁的數目、大小、形狀與生物體的種類、細胞的種類、細胞的代謝狀態均有關係。一般地,蛋白質合成較旺盛的細胞核仁數目多、體積大,蛋白質合成不活躍的細胞核仁數目少、體積小,甚至沒有核仁。 核仁由DNA、RNA,以及蛋白質組成。核仁會伴隨細胞週期不斷解構、重構。但目前核仁的週期性變化的分子機制還未得到闡明。.

新!!: 细胞核和核仁 · 查看更多 »

核糖体

核糖体,旧称“核糖核蛋白体”或“核蛋白体”,是细胞中的一种细胞器因为在某些场合“细胞器”一词也会被用于专指具有磷脂双分子层膜结构的亚细胞结构,而核糖体虽然已是一种公认的细胞器,却是没有被膜包裹、完全裸露的大分子,所以核糖体有时会被严格地定义为“无膜细胞器”(non-membranous organelles)。,由一大一小两个-zh-tw:次單元;zh-cn:亚基-结合形成,主要成分是相互缠绕的RNA(称为“核糖体RNA”,ribosomal RNA,简称“rRNA”)和蛋白质(称为“核糖体蛋白质”,ribosomal protein,简称“RP”)。核糖体是细胞内蛋白质合成的场所,能读取信使RNA核苷酸序列所包含的遗传信息,并使之转化为蛋白质中氨基酸的序列信息以合成蛋白质。在原核生物及真核生物(地球上的两种具有细胞结构的主要生命形式,前者可细分为古菌、真细菌两类)的细胞中都有核糖体存在。一般而言,原核细胞只有一种核糖体,而真核细胞具有两种核糖体(线粒体和叶绿体中的核糖体与细胞质核糖体不相同)。 核糖体在细胞中负责完成“中心法则”裡由RNA到蛋白质这一过程,此过程在生物学中被称为“翻译”。在进行翻译前,核糖体小次單元会先与从细胞核中转录得到的信使RNA(messenger RNA,简称“mRNA”)结合,再结合核糖体大次單元构成完整的核糖体之后,便可以利用细胞质基质中的转运RNA(transfer RNA,简称“tRNA”)运送的氨基酸分子合成多肽。当核糖体完成对一条mRNA单链的翻译后,大小--会再次分离。 英语中的“核糖体”(ribosome)一词是由“核糖核酸”(“ribo”)和希腊语词根“soma”(意为“体”)组合而成的。.

新!!: 细胞核和核糖体 · 查看更多 »

核糖體RNA

#重定向 核糖體核糖核酸.

新!!: 细胞核和核糖體RNA · 查看更多 »

核糖核酸

核糖核酸(Ribonucleic acid),簡稱RNA,是一類由核糖核苷酸通過3',5'-磷酸二酯鍵聚合而成的線性大分子。自然界中的RNA通常是單鏈的,且RNA中最基本的四種鹼基爲A(腺嘌呤)、U(尿嘧啶)、G(鳥嘌呤)、C(胞嘧啶)通過轉錄後修飾,RNA可能會帶上(Ψ)這樣的稀有鹼基,相對的,與RNA同爲核酸的DNA通常是雙鏈分子,且含有的含氮鹼基爲A(腺嘌呤)、T(胸腺嘧啶)、G(鳥嘌呤)、C(胞嘧啶)四種。 RNA有着多種多樣的功能,可在遺傳編碼、翻譯、調控、基因表達等過程中發揮作用。按RNA的功能,可將RNA分爲多種類型。比如,在細胞生物中,mRNA(信使RNA)爲遺傳信息的傳遞者,它能夠指導蛋白質的合成。因爲mRNA有編碼蛋白質的能力,它又被稱爲編碼RNA。而其他沒有編碼蛋白質能力的RNA則被稱爲非編碼RNA(ncRNA)。它們或通過催化生化反應,或通過調控或參與基因表達過程發揮相應的生物學功能。比如,tRNA(轉運RNA)在翻譯過程中起轉運RNA的作用,rRNA(核糖體RNA)於翻譯過程中起催化肽鏈形成的作用,(小RNA)起到調控基因表達的作用。此外,RNA病毒甚至以RNA作爲它們的遺傳物質。 RNA通常由DNA通過轉錄生成。RNA在細胞中廣泛分佈,真核生物的細胞核、細胞質、粒線體中都有RNA。.

新!!: 细胞核和核糖核酸 · 查看更多 »

核纖層

核纖層旧称“核周层”、“核衬层”或“核层”,是位于细胞核内染色质与核膜之间的高电子密度网络片层结构,由中间丝与膜相关蛋白(membrane associated proteins)交织形成,普遍存在于真核细胞的细胞核中。核纤层处于核基质中,在核内与核内膜(inner nuclear membrane,INM)相连,在核外则与内质网相连。核纤层是支撑细胞核的一种结构,对调节DNA自我复制、DNA转录、细胞凋亡与细胞分裂过程中核膜的破裂及重建也起到一定作用。此外,核纤层还可以辅助组织染色质并锚定核孔复合物(nuclear pore complexes,NPCs)、核膜蛋白及转录因子。.

新!!: 细胞核和核纖層 · 查看更多 »

核運輸

核運輸(英語:Nuclear transport)是細胞核膜上所進行各種運輸作用,其中大分子受到核孔複合體(nuclear pore complexes,NPCs)的控制,而小分子則可以不受約束。核轉運蛋白(karyopherin),如內輸蛋白(importin)和外輸蛋白(exportin),是幫助如RNA般的大分子進出細胞核的蛋白質。.

新!!: 细胞核和核運輸 · 查看更多 »

核膜

核膜(nuclear membrane 或 karyotheca),又称核被膜或核封套(nuclear envelope)是包圍真核细胞細胞核,分隔開细胞核和细胞质的生物膜。.

新!!: 细胞核和核膜 · 查看更多 »

核酸

核酸(nucleic acids)是一种通常位于细胞核内的大型生物分子,負責生物体遗传信息的携带和传递。核酸有兩大類,分別是脱氧核糖核酸(DNA)和核糖核酸(RNA)。 核酸的单体结构为核苷酸。每一个核苷酸分子由三部分组成:一个五碳糖、一个含氮碱基、和一个磷酸基。如果其五碳糖是脱氧核糖則為脱氧核糖核苷酸,此單體之聚合物是DNA。如果其五碳糖是核糖則為核糖核苷酸,此單體之聚合物是RNA。核苷酸也被称为核苷酸磷酸盐。 核酸是最重要的生物大分子(其余为氨基酸/蛋白质,糖/碳水化合物,脂质和/脂肪)。它们大量存在于所有活的东西,功能有编码,传递和表达遗传信息 - 换句话说,信息通过核酸序列被传递。DNA分子含有生物物种的所有遗传信息,为双链分子,其中大多数是链状结构大分子,也有少部分呈环状结构,分子量一般都很大。RNA主要是负责DNA遗传信息的翻译和表达,为单链分子,分子量要比DNA小得多。 核酸存在于所有动植物细胞、微生物和病毒、噬菌体内,是生命的最基本物质之一,对生物的生长、遗传、变异等现象起着重要的决定作用。 核酸是在1869年被科学家弗雷德里希·米歇尔发现。核酸实验研究构成了现代生物学和医学研究的重要组成部分,形成了基因组和法医学,以及生物技术和制药行业的基础。.

新!!: 细胞核和核酸 · 查看更多 »

氧气

氧气(Oxygen, Dioxygen,分子式O2)是氧元素最常见的单质形态,在空气中按体积分数算大约占21%,在标准状况下是气体,不易溶于水,密度比空气略大,氧气的密度是1.429g/L 。不可燃,可助燃。.

新!!: 细胞核和氧气 · 查看更多 »

江苏省

江苏,简称苏,是現中华人民共和国华东地区的一省,省名为江宁(南京)和苏州的合称,省会为南京市。江苏省地跨长江、淮河南北。 江苏可分為苏南、苏中、苏北三個區域,也可划分为江南、江淮、淮北三个区域,這三個區域在文化、地理、经济各方面都呈现其獨特性。东吴以来,历东晋、南朝、隋、唐、南唐、北宋、南宋,江苏地区经济文化一直比较繁荣,拥有13座国家历史文化名城,明朝中后期、清中期,分别达到巅峰。1927年,当时亚洲最大的城市上海和中华民国首都南京先后设立特别市而脱离江苏省,江苏的地位有所下降。改革开放以后,江苏省经济社会发展迅速。 該省人类发展指数、人均地区生产总值和人均国民收入均居中国(大陆)省级行政区第四位,地区生产总值則居全国第二位、世界第六位。江苏与上海、浙江省、安徽省共同构成的长江三角洲城市群是世界六大城市群之一。.

新!!: 细胞核和江苏省 · 查看更多 »

激酶

在生物化学裡,激酶是一类从高能供体分子(如ATP)转移磷酸基团到特定靶分子(受質)的酶;这一过程谓之磷酸化。 一般而言,磷酸化的目的是“激活”或“能化”受質,增大它的能量,以使其可参加随后的自由能负变化的反应。所有的激酶都需要存在一个二价金属离子(如Mg2+或Mn2+),该离子起稳定供体分子高能键的作用,且为磷酸化的发生提供可能性。.

新!!: 细胞核和激酶 · 查看更多 »

有絲分裂

-- 有丝分裂(mitosis)是真核细胞将其细胞核中染色体分配到两个子核之中的过程。细胞核分裂后通常伴随着,将细胞质、细胞器与细胞膜等细胞结构均等分配至子细胞中。有丝分裂与细胞质分裂被定义为细胞周期的分裂期,或M期;该过程产生两个与母细胞基因相同的子细胞。这个过程一般约占整个细胞周期的10%。 仅真核细胞可以进行有丝分裂,其过程在物种之间有所不同。例如,动物细胞进行“开放式”有丝分裂,核膜在染色体分裂前破裂。真菌则进行“封闭”式有丝分裂,在完整核膜中染色体即完成了向两个子核的分裂。原核细胞由于没有细胞核,只进行二分裂。 有丝分裂过程具有高度的复杂性和规律性。中间的事件被分为几个互相前后联系的时期。这些阶段分别为间期、前期、、、、。在有丝分裂期间,染色质形成染色体对,并被一种叫做纺锤丝的微管牵引,将姊妹染色单体拖至细胞两极。之后细胞进入细胞质分裂,产生两个基因组成相同的细胞。 因为细胞质分裂通常发生于有丝分裂之后,因此“有丝分裂”常常与“有丝分裂期”交替使用。但是,有细胞分开进行有丝分裂和染色体分裂,形成具有多核的细胞。通常真菌和黏菌有此特征,但动物也可分开进行有丝分裂和细胞质分裂,比如果蝇胚胎發育。 有丝分裂中的错误会因细胞凋亡杀死该细胞,或导致突变而致癌。.

新!!: 细胞核和有絲分裂 · 查看更多 »

有性生殖的演化

有性生殖的演化由若干个相互竞争的科学假说所描述。所有有性生殖的真核生物都来自一种单细胞、真核的共同祖先。 很多原生生物,以及大多数多细胞的动物,植物和真菌,都进行有性生殖。有少数物种,如 Bdelloidea 和一些单性结实的植物,次生的失去了这一特性。性的进化包括两个相关却不同的主题:“性的起源”和“性的维持”。然而,由于性的起源的学说难以通过实验检测,目前的主要工作集中于有性生殖的维持方面。 似乎性周期的维持是因为有利于提高子代的品质(适应度),尽管减少了后代的总数量。(性的双重代价)为了使性在进化上有优势,它必须与显而易见的后代适应度的增加相联系。对有性生殖的优势最常见的解释在于“遗传变异的创造”。另一个解释则基于两个分子方面的优势。第一个是重组DNA修复的优势(在减数分裂中得到促进,因为这段时间同源染色体联会),另一个则是互补作用造成的优势(也叫做杂种优势)。 对创造遗传变异的优势,有三个可能的理由使它可能发生。首先,有性生殖可以把两个有利的突变集中于同一个个体上(性帮助有利特性的传播)。并且,这些必须的突变并不必要在同一系列的子代上接连发生。第二,性可以集中当前有害的突变而创造极度不适合的个体;这些个体随后即被种群淘汰掉。然而,必须注意到,在只有一条染色体的生物中,有害的突变体将会立刻被清除,所以这个解释不太像有性生殖的益处。最后,性可以创造新的基因组合,它们也许比起先前出现的更加适应,或者只是简单的导致亲属之间竞争的减弱。 对由于DNA修复的优势而言,通过减数分裂期间的重组DNA修复对DNA损坏的清除立刻有一个巨大好处,由于这个清除允许了具有未损坏的DNA时更大的后代存活率。互补作用对每一个性伴侣的优势,是通过另一个伴侣给出的正常显性基因的掩盖效应,避免后代有害隐性基因产生的有害效应。 基于变异的创造的假说被进一步细分如下。意识到任意数量的这些假说在任意给定的物种中都可能为真(它们并不是互斥事件),并且不同的假说可能应用于不同的物种这一点很重要。 另一方面,基于DNA修复和互补作用的有性生殖的维持广泛适用于所有的进行有性生殖的物种。对维持有性生殖所做的这个解释会在6.2节进一步探索。.

新!!: 细胞核和有性生殖的演化 · 查看更多 »

浮黴菌門

浮黴菌門(Planctomycetes)是一小門水生細菌,在海水、半咸水、淡水中都可被發現。 其中浮黴菌屬(Planctomyces)和小梨形菌屬(Pirellula)等都是專性好氧菌。它們通過出芽法繁殖。形態上,它們通常是卵形,不用來繁殖的一端有柄,可以用來附着。它們的生活史分爲固着細胞和有鞭毛的游動細胞,類似α-變形菌綱的柄桿菌屬。 浮黴菌門的細胞壁中含有糖蛋白而不含胞壁質,因此它們可以通過青黴素等破壞細胞壁的抗生素來選擇性富集。最爲奇特的一點是,浮黴菌門細胞具有複雜的胞内膜結構,甚至有些屬(如出芽菌屬(Gemmata))的染色質被膜包圍且緊縮,類似真核生物的細胞核,這在原核生物中是僅有的。 此外,在浮黴菌門中還有一類和浮黴菌屬等關係較遠的細菌,如(Candidatus Brocadia)、(Candidatus Kuenenia)和(Candidatus Scalindua)屬,它們至今未能成功分離得到純菌株,因此尚未獲得正式命名和分類。它們能夠在缺氧環境下利用亞硝酸鹽(NO2-)氧化銨離子(NH4+)生成氮氣來獲得能量,因此稱作厭氧氨氧化菌(anaerobic ammonium oxidation, Anammox),對全球氮循環具有重要意義,也是污水處理中重要的細菌。.

新!!: 细胞核和浮黴菌門 · 查看更多 »

海膽

海膽是棘皮动物門分類下的一個綱,其正式學名是海膽綱(Echinoidea),意思是「像豪豬般的動物」),又名「海刺蝟」。海膽生活在海洋中,廣泛分佈於世界各地的海洋,從潮間帶至數千公尺的深海底都可發現其蹤跡。全世界現存約有1000種海膽,化石700種以上。.

新!!: 细胞核和海膽 · 查看更多 »

早年衰老症候群

早年衰老症候群(Hutchinson-Gilford Progeria syndrome),簡稱早衰症。早衰症是一種極端罕見的先天遺傳性疾病,其患者身體的老化過程十分快速。而罹患此病孩童的年齡很少超過13歲,大約每八百萬個新生兒之中就有一位得到此疾。雖然早衰症是一種遺傳性疾病,但是發生的十分零星且很少在家族之中遺傳下來。 科學家們對早衰症尤其有興趣,因為相關的研究可能透漏出關於正常人體老化程序的知識。.

新!!: 细胞核和早年衰老症候群 · 查看更多 »

攜帶蛋白

#重定向 载体蛋白.

新!!: 细胞核和攜帶蛋白 · 查看更多 »

拟核

擬核(英語:nucleoid;意指「與核相似」,又譯類核),也稱核區(nuclear region)、核體(nuclear body)或染色質體(chromatin body)。 存在於原核生物,是没有由核膜包被的细胞核,也没有染色体,只有一个位于形狀不規則且边界不明显区域的环形DNA分子。內含遺傳物質。裡面的核酸為雙股螺旋形式的環狀DNA,且同時具有多個相同的複製品。 实验显示,拟核的主要成分是占60%的DNA和少量RNA以及蛋白质。后两种成分主要是信使RNA和转录因子蛋白质。拟核蛋白质使核酸保持超螺旋结构,尽管在功能上与真核中的组蛋白类似,但实际上并不相同。 類核可於高倍數電子顯微鏡下觀測,外表並不一定,但可明顯與細胞質基質區分,有時還可見其中的DNA。若DNA經過福爾根染色(Feulgen stain)處理,那麼將使類核可見於光學顯微鏡中。.

新!!: 细胞核和拟核 · 查看更多 »

拓撲異構酶

拓樸異構酶(Topoisomerase;type I:,type II:)是一種異構酶,能使DNA長鏈斷裂與接合。專門參與DNA拓撲構形(DNA topology)改變的過程,最早的發現者是出身台灣的生化學家王倬。.

新!!: 细胞核和拓撲異構酶 · 查看更多 »

5'端帽

5'端帽(five prime cap)是在真核生物中信使RNA(mRNA)的5'端经修改後形成的的雙核苷酸端点。5'加帽的過程對建立成熟的mRNA作翻譯非常重要。加帽確保了mRNA在蛋白質生物合成中進行轉譯的穩定性,並在細胞核中是高度調控的過程。.

新!!: 细胞核和5'端帽 · 查看更多 »

重定向到这里:

細胞核

传出传入
嘿!我们在Facebook上吧! »