我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

轉移矩陣

指数 轉移矩陣

在数学中,随机矩阵(也称为概率矩阵、转移矩阵、替代矩阵、或马尔可夫矩阵)是用来描述一个马尔可夫链的转变的矩阵 。它的每一项都是一个表示概率的非负实数。它适用于概率论、统计学和线性代数,也在计算机科学和群体遗传学中使用。 有几种不同的定义和类型随机矩阵:.

目录

  1. 20 关系: 向量实数密度矩陣單位矩陣矩阵矩阵多项式线性代数统计学群体遗传学随机变量行向量行向量與列向量马尔可夫链计算机科学耗散系統概率概率空間概率论有限集合数学

  2. 马尔可夫模型

向量

向量(vector,物理、工程等也称作--)是数学、物理学和工程科学等多个自然科學中的基本概念,指一个同时具有大小和方向,且满足平行四边形法则的几何對象。一般地,同时满足具有大小和方向两个性质的几何对象即可认为是向量(特别地,电流属既有大小、又有正负方向的量,但由于其运算不满足平行四边形法则,公认为其不属于向量)。向量常常在以符号加箭头标示以区别于其它量。与向量相对的概念称标量或数量,即只有大小、绝大多数情况下没有方向(电流是特例)、不满足平行四边形法则的量。.

查看 轉移矩陣和向量

实数

实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.

查看 轉移矩陣和实数

密度矩陣

垂直平面偏振器(3)之後,光子處於垂直偏振純態(4),密度矩陣為\beginbmatrix 1 & 0 \\ 0 & 0 \\ \endbmatrix 。 在量子力學裏,密度算符(density operator)與其對應的密度矩陣(density matrix)專門描述混合態量子系統的物理性質。純態是一種可以直接用態向量 | \psi\rangle 來描述的量子態,混合態則是由幾種純態依照統計機率組成的量子態。假設一個量子系統處於純態 | \psi_1 \rangle 、| \psi_2 \rangle 、| \psi_3 \rangle 、……的機率分別為 w_1 、w_2 、w_3 、……,則這混合態量子系統的密度算符 \rho 為 注意到所有機率的總和為1: 假設 \ 是一組規範正交基,則對應於密度算符的密度矩陣 \varrho ,其每一個元素 \varrho_ 為 對於這量子系統,可觀察量 A 的期望值為 是可觀察量 A 對於每一個純態的期望值 \langle \psi_i | | \psi_i \rangle 乘以其權值 w_i 後的總和。 混合態量子系統出現的案例包括,處於熱力學平衡或化學平衡的系統、製備歷史不確定或隨機變化的系統(因此不知道到底系統處於哪個純態)。假設量子系統處於由幾個糾纏在一起的子系統所組成的純態,則雖然整個系統處於純態,每一個子系統仍舊可能處於混合態。在量子退相干理論裏,密度算符是重要理論工具。 密度算符是一種線性算符,是自伴算符、非負算符(nonnegative operator)、跡數為1的算符。關於密度算符的數學形式論是由約翰·馮·諾伊曼與列夫·郎道各自獨立於1927年給出。.

查看 轉移矩陣和密度矩陣

單位矩陣

在線性代數中,n階單位矩陣,是一個n \times n的方形矩陣,其主對角線元素為1,其餘元素為0。單位矩陣以I_n表示;如果階數可忽略,或可由前後文確定的話,也可簡記為I(或者E)。(在部分領域中,如量子力學,單位矩陣是以粗體字的1表示,否則無法與I作區別。) I_1.

查看 轉移矩陣和單位矩陣

矩阵

數學上,一個的矩陣是一个由--(row)--(column)元素排列成的矩形阵列。矩陣--的元素可以是数字、符号或数学式。以下是一个由6个数字元素构成的2--3--的矩阵: 大小相同(行数列数都相同)的矩阵之间可以相互加减,具体是对每个位置上的元素做加减法。矩阵的乘法则较为复杂。两个矩阵可以相乘,当且仅当第一个矩阵的--数等于第二个矩阵的--数。矩阵的乘法满足结合律和分配律,但不满足交换律。 矩阵的一个重要用途是解线性方程组。线性方程组中未知量的系数可以排成一个矩阵,加上常数项,则称为增广矩阵。另一个重要用途是表示线性变换,即是诸如.

查看 轉移矩陣和矩阵

矩阵多项式

矩阵多项式是数学中矩阵论里的概念,指由方块矩阵作为不定元的多项式,或由方块矩阵作为变量的多项式函数。.

查看 轉移矩陣和矩阵多项式

线性代数

线性代数是关于向量空间和线性映射的一个数学分支。它包括对线、面和子空间的研究,同时也涉及到所有的向量空间的一般性质。 坐标满足线性方程的点集形成n维空间中的一个超平面。n个超平面相交于一点的条件是线性代数研究的一个重要焦点。此项研究源于包含多个未知数的线性方程组。这样的方程组可以很自然地表示为矩阵和向量的形式。 线性代数既是纯数学也是应用数学的核心。例如,放宽向量空间的公理就产生抽象代数,也就出现若干推广。泛函分析研究无穷维情形的向量空间理论。线性代数与微积分结合,使得微分方程线性系统的求解更加便利。线性代数的理论已被泛化为。 线性代数的方法还用在解析几何、工程、物理、自然科学、計算機科學、计算机动画和社会科学(尤其是经济学)中。由于线性代数是一套完善的理论,非线性数学模型通常可以被近似为线性模型。.

查看 轉移矩陣和线性代数

统计学

统计学是在資料分析的基础上,研究测定、收集、整理、归纳和分析反映數據資料,以便给出正确訊息的科學。這一门学科自17世纪中叶产生并逐步发展起来,它廣泛地應用在各門學科,從自然科学、社會科學到人文學科,甚至被用於工商業及政府的情報決策。隨著大数据(Big Data)時代來臨,統計的面貌也逐漸改變,與資訊、計算等領域密切結合,是資料科學(Data Science)中的重要主軸之一。 譬如自一組數據中,可以摘要並且描述這份數據的集中和離散情形,這個用法稱作為描述統計學。另外,觀察者以數據的形態,建立出一個用以解釋其隨機性和不確定性的數學模型,以之來推論研究中的步驟及母體,這種用法被稱做推論統計學。這兩種用法都可以被稱作為應用統計學。數理統計學则是討論背後的理論基礎的學科。.

查看 轉移矩陣和统计学

群体遗传学

群体遗传学()又稱--遺傳學或種--群遺傳學,是研究在演化动力的影响下,等位基因的分布和改变。演化动力包括自然选择、性選擇、遺傳漂變、突变以及基因流動五种。通俗而言,群体遗传学则是在种群水平上进行研究的遗传学分支。它也研究遗传重组,种群的分类,以及种群的空间结构。同样地,群体遗传学试图解释诸如适应和物种形成现象的理论。 群体遗传学是现代进化综论出现的一个重要成分。该学科的主要创始人是休厄尔·赖特、约翰·伯顿·桑德森·霍尔丹和羅納德·費雪,他们还曾经为的相关理论建立基础。 传统上是高度数学化的学科,现代的群体遗传学包括理论的,实验室的和实地的工作。计算方法常使用,自1980年代发挥了核心作用。.

查看 轉移矩陣和群体遗传学

随机变量

給定樣本空间(S, \mathbb),如果其上的實值函數 X:S \to \mathbb是\mathbb (實值)可測函數,则稱X為(實值)随机变量。初等概率論中通常不涉及到可測性的概念,而直接把任何X:S \to \mathbb的函數稱為随机变量。 如果X指定给概率空间S中每一个事件e有一个实数X(e),同时针对每一个实数r都有一个事件集合A_r与其相对应,其中A_r.

查看 轉移矩陣和随机变量

行向量

#重定向 行向量與列向量.

查看 轉移矩陣和行向量

行向量與列向量

在 线性代数中,列向量 / 排矩阵 是一个 m × 1 矩阵,m 為任意正整數,例如: 此外,行向量 / 行矩阵 是一个 1 × m 矩阵,m為任意正整數,例如: 黑体字 \mathbf 用于表示行向量或列向量。 行向量的转置(以T表示)是列向量: 而列向量的转置就是行向量: 集合所有的行矢量的 向量空间 称为行空间。同样地,集合所有列矢量的向量空间称为列空间。行列空间的尺寸等的条目数量的行中的或列的矢量。 列空間可以看作是行空間的雙重空間,因為列向量空間上的任何線性函數都可以唯一地表示為具有特定行向量的內積。.

查看 轉移矩陣和行向量與列向量

马尔可夫链

尔可夫链(Markov chain),又稱離散時間馬可夫鏈(discrete-time Markov chain,縮寫為DTMC),因俄國數學家安德烈·马尔可夫(Андрей Андреевич Марков)得名,为狀態空間中经过从一个状态到另一个状态的转换的随机过程。该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关。这种特定类型的“无记忆性”称作馬可夫性質。马尔科夫链作为实际过程的统计模型具有许多应用。 在马尔可夫链的每一步,系统根据概率分布,可以从一个状态变到另一个状态,也可以保持当前状态。状态的改变叫做转移,与不同的状态改变相关的概率叫做转移概率。随机漫步就是马尔可夫链的例子。随机漫步中每一步的状态是在图形中的点,每一步可以移动到任何一个相邻的点,在这里移动到每一个点的概率都是相同的(无论之前漫步路径是如何的)。.

查看 轉移矩陣和马尔可夫链

计算机科学

计算机科学用于解决信息与计算的理论基础,以及实现和应用它们的实用技术。 计算机科学(computer science,有时缩写为CS)是系统性研究信息与计算的理论基础以及它们在计算机系统中如何与应用的实用技术的学科。 它通常被形容为对那些创造、描述以及转换信息的算法处理的系统研究。计算机科学包含很多分支领域;有些强调特定结果的计算,比如计算机图形学;而有些是探討计算问题的性质,比如计算复杂性理论;还有一些领域專注于怎样实现计算,比如程式語言理論是研究描述计算的方法,而程式设计是应用特定的程式語言解决特定的计算问题,人机交互则是專注于怎样使计算机和计算变得有用、好用,以及随时随地为人所用。 有时公众会误以为计算机科学就是解决计算机问题的事业(比如信息技术),或者只是与使用计算机的经验有关,如玩游戏、上网或者文字处理。其实计算机科学所关注的,不仅仅是去理解实现类似游戏、浏览器这些软件的程序的性质,更要通过现有的知识创造新的程序或者改进已有的程序。 尽管计算机科学(computer science)的名字里包含计算机这几个字,但实际上计算机科学相当数量的领域都不涉及计算机本身的研究。因此,一些新的名字被提议出来。某些重点大学的院系倾向于术语计算科学(computing science),以精确强调两者之间的不同。丹麦科学家Peter Naur建议使用术语"datalogy",以反映这一事实,即科学学科是围绕着数据和数据处理,而不一定要涉及计算机。第一个使用这个术语的科学机构是哥本哈根大学Datalogy学院,该学院成立于1969年,Peter Naur便是第一任教授。这个术语主要被用于北欧国家。同时,在计算技术发展初期,《ACM通讯》建议了一些针对计算领域从业人员的术语:turingineer,turologist,flow-charts-man,applied meta-mathematician及applied epistemologist。 三个月后在同样的期刊上,comptologist被提出,第二年又变成了hypologist。 术语computics也曾经被提议过。在欧洲大陆,起源于信息(information)和数学或者自动(automatic)的名字比起源于计算机或者计算(computation)更常见,如informatique(法语),Informatik(德语),informatika(斯拉夫语族)。 著名计算机科学家Edsger Dijkstra曾经指出:“计算机科学并不只是关于计算机,就像天文学并不只是关于望远镜一样。”("Computer science is no more about computers than astronomy is about telescopes.")设计、部署计算机和计算机系统通常被认为是非计算机科学学科的领域。例如,研究计算机硬件被看作是计算机工程的一部分,而对于商业计算机系统的研究和部署被称为信息技术或者信息系统。然而,现如今也越来越多地融合了各类计算机相关学科的思想。计算机科学研究也经常与其它学科交叉,比如心理学,认知科学,语言学,数学,物理学,统计学和经济学。 计算机科学被认为比其它科学学科与数学的联系更加密切,一些观察者说计算就是一门数学科学。 早期计算机科学受数学研究成果的影响很大,如Kurt Gödel和Alan Turing,这两个领域在某些学科,例如数理逻辑、范畴论、域理论和代数,也不断有有益的思想交流。.

查看 轉移矩陣和计算机科学

耗散系統

耗散系統(Dissipative system)是指一个远离熱力學平衡状态的开放系统,此系統和外环境交换能量、物质和熵而继续维持平衡,对这种结构的研究,解释了自然界许多以前无法解释的现象。 耗散结构一词由比利时物理学家、化学家伊里亚·普里高津发明。普里高津创立了耗散结构理论,研究一个系统从混沌无序向有序转化的机理、条件和规律的科学,他为此曾获1977年诺贝尔化学奖。 常見的耗散结构包括對流、气旋、熱帶氣旋及生物体。像镭射、及B-Z反应也是耗散结构的例子。.

查看 轉移矩陣和耗散系統

概率

--率,舊稱--率,又称或然率、機會率或--、可能性,是数学概率论的基本概念,是一个在0到1之间的实数,是对随机事件发生之可能性的度量。 概率常用來量化對於某些不確定命題的想法"Kendall's Advanced Theory of Statistics, Volume 1: Distribution Theory", Alan Stuart and Keith Ord, 6th Ed, (2009), ISBN 978-0-534-24312-8,命題一般會是以下的形式:「某個特定事件會發生嗎?」,對應的想法則是:「我們可以多確定這個事件會發生?」。確定的程度可以用0到1之間的數值來表示,這個數值就是機率William Feller, "An Introduction to Probability Theory and Its Applications", (Vol 1), 3rd Ed, (1968),Wiley,ISBN 978-0-471-25708-0。因此若事件發生的機率越高,表示我們越認為這個事件可能發生。像丟銅板就是一個簡單的例子,正面朝上及背面朝上的兩種結果看來機率相同,每個的機率都是1/2,也就是正面朝上及背面朝上的機率各有50%。 這些概念可以形成機率論中的數學公理(參考概率公理),在像數學、統計學、金融、博弈論、科學(特別是物理)、人工智慧/機器學習、電腦科學及哲學等學科中都會用到。機率論也可以描述複雜系統中的內在機制及規律性。.

查看 轉移矩陣和概率

概率空間

概率空間是概率論的基礎。概率的嚴格定義基于這個概念。.

查看 轉移矩陣和概率空間

概率论

概率论(Probability theory)是集中研究概率及随机现象的数学分支,是研究隨機性或不確定性等現象的數學。概率论主要研究对象为随机事件、随机变量以及随机过程。对于随机事件是不可能准确预测其结果的,然而对于一系列的独立随机事件——例如掷骰子、扔硬币、抽扑克牌以及輪盤等,会呈现出一定的、可以被用于研究及预测的规律,两个用来描述这些规律的最具代表性的数学结论分别是大数定律和中心极限定理。 作为统计学的数学基础,概率论对诸多涉及大量数据定量分析的人类活动极为重要,概率论的方法同样适用于其他方面,例如是对只知道系统部分状态的复杂系统的描述——统计力学,而二十世纪物理学的重大发现是以量子力学所描述的原子尺度上物理现象的概率本质。 數學家和精算師認為概率是在0至1閉區間内的數字,指定給一發生與失敗是隨機的「事件」。概率P(A)根據概率公理來指定給事件A。 一事件A在一事件B確定發生後會發生的概率稱為B給之A的條件概率;其數值為。若B給之A的條件概率和A的概率相同時,則稱A和B為獨立事件。且A和B的此一關係為對稱的,這可以由一同價敘述:「當A和B為獨立事件時,P(A \cap B).

查看 轉移矩陣和概率论

有限集合

数学中,一个集合被称为有限集合,簡單來說就是元素個數有限,嚴格而言則是指有一个自然数n使该集合与集合之间存在双射。例如 -15到3之间的整数组成的集合,这个集合有19个元素,它跟集合存在雙射,所以它是有限的。不是有限的集合称为无限集合。 也就是说如果一个集合的基数是自然数,那这个集合就是有限的。所有的有限集合都是可数的,但并不是所有的可数集都是有限的,例如所有素数的集合。 有一个定理(戴德金定理)是:一个集合是有限的当且仅当不存在一个该集合与它的任何一个真子集之间的双射。 I I.

查看 轉移矩陣和有限集合

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

查看 轉移矩陣和数学

另见

马尔可夫模型