我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

豌豆星系

指数 豌豆星系

豌豆星系,也稱為豌豆或綠豌豆,是一種有著異乎平常的恆星形成比率,可能是新類型的明亮藍緻密星系。豌豆星系是因為史隆數位巡天 (SDSS) 得到的圖像都是體積小且呈現淡綠色外觀而得名的。 豌豆星系是在2007年由天文學的線上自願工作者在星系動物園 (GZ) 計畫中首度發現。星系動物園的創辦者與奠基人之一,Kevin Schawinski說:這是真正的公民科學計畫……它是如何從事科學研究的新方法產生結果的一個偉大例子,否則不會有可能的。.

目录

  1. 34 关系: 史隆數位巡天天文學天文物理期刊天文期刊宇宙密度巨米波電波望遠鏡亮度廣域紅外線巡天探測衛星皇家天文學會月報矮星系禁線等效寬度紫外線天文學纳米网络论坛美国国家航空航天局电离譜線藍緻密矮星系银河系金屬量雙電離氧H-α恆星形成棒旋星系欧洲空间局活动星系核星系分類星系動物園星系的形成和演化星暴星系敏豆星系

  2. 2007年科學
  3. 众包
  4. 公众科学
  5. 星系

史隆數位巡天

斯隆数字化巡天(Sloan Digital Sky Survey,縮寫為SDSS)是使用位於新墨西哥州阿帕契點天文台的2.5米口径望遠鏡进行的红移巡天项目。该项目开始于2000年,以阿爾弗雷德·史隆的名字命名,计划观测25%的天空,獲取超过一百萬個天體的多色测光资料和光谱数据。斯隆数字化巡天的星系样本以紅移0.1為中值,对于紅星系的紅移值達到0.4,對于類星體紅移值则達到5,並且希望探测到紅移值大于6的類星體。 2006年,斯隆数字化巡天进入了名为SDSS-II的新阶段,进一步探索銀河系的結構和组成,而斯隆超新星巡天计划搜寻Ⅰa型超新星爆发,以测量宇宙学尺度上的距离。 2008年10月31日,SDSS-II发布了最后一次数据。 斯隆数字化巡天第三期工程SDSS-III已经于2008年7月启动,将持续至2014年。.

查看 豌豆星系和史隆數位巡天

天文學

天文學是一門自然科學,它運用數學、物理和化學等方法來解釋宇宙間的天體,包括行星、衛星、彗星、恆星、星系等等,以及各種現象,如超新星爆炸、伽瑪射線暴、宇宙微波背景輻射等等。廣義地來說,任何源自地球大氣層以外的現象都屬於天文學的研究範圍。物理宇宙學與天文學密切相關,但它把宇宙視為一個整體來研究。 天文學有著遠古的歷史。自有文字記載起,巴比倫、古希臘、印度、古埃及、努比亞、伊朗、中國、瑪雅以及許多古代美洲文明就有對夜空做詳盡的觀測記錄。天文學在歷史上還涉及到天體測量學、天文航海、觀測天文學和曆法的制訂,今天則一般與天體物理學同義。 到了20世紀,天文學逐漸分為觀測天文學與理論天文學兩個分支。觀測天文學以取得天體的觀測數據為主,再以基本物理原理加以分析;理論天文學則開發用於分析天體現象的電腦模型和分析模型。兩者相輔相成,理論可解釋觀測結果,觀測結果可證實理論。 與不少現代科學範疇不同的是,天文學仍舊有比較活躍的業餘社群。業餘天文學家對天文學的發展有著重要的作用,特別是在發現和觀察彗星等短暫的天文現象上。 http://www.sydneyobservatory.com.au/ Official Web Site of the Sydney Observatory Astronomy (from the Greek ἀστρονομία from ἄστρον astron, "star" and -νομία -nomia from νόμος nomos, "law" or "culture") means "law of the stars" (or "culture of the stars" depending on the translation).

查看 豌豆星系和天文學

天文物理期刊

天文物理期刊(The Astrophysical Journal)是在天文学及天体物理学領域重要的研究期刊,于1895年創刊,至2008年底都由美國芝加哥大學出版社發行;2009年1月起改由英國物理學會出版社發行。編輯部附屬美國天文學會之下,每月出版三冊,刊載的內容主要為最新的天文物理發展、發現、及学说。.

查看 豌豆星系和天文物理期刊

天文期刊

天文期刊(Astronomical Journal,AJ)是由美國天文學會委託英國物理學會出版社發行的科學期刊。這是目前世界上最重要的幾個天文學期刊。2008年以前是由美國天文學會委託芝加哥大學出版社出版。2009年1月起才更改。另外兩個重要的天文學期刊,天文物理期刊和天文物理期刊增刊系列也在2009年1月改由英國物理學會出版社出版。.

查看 豌豆星系和天文期刊

宇宙

宇宙(Universe)是所有時間、空間與其包含的內容物所構成的統一體;它包含了行星、恆星、星系、星系際空間、次原子粒子以及所有的物質與能量,宇指空間,宙指時間。目前人類可觀測到的宇宙,其距離大約為;而整個宇宙的大小可能為無限大,但未有定論。物理理論的發展與對宇宙的觀察,引領著人類進行宇宙構成與演化的推論。 根據歷史記載,人類曾經提出宇宙學、天體演化學與,解釋人們對於宇宙的觀察。最早的理論為地心說,由古希臘哲學家與印度哲學家所提出。數世紀以來,逐漸精確的天文觀察,引領尼古拉斯·哥白尼提出以太陽系為主的日心說,以及經約翰內斯·克卜勒改良的橢圓軌道模型;最終艾薩克·牛頓的重力定律解釋了前述的理論。後來觀察方法逐漸改良,引領人類意識到太陽系位於數十億恆星所形成的星系,稱為銀河系;隨後更發現,銀河系只是眾多星系之一。在最大尺度範圍上,人們假定星系的分布,且各星系在各個方向之間的距離皆相同,這代表著宇宙既沒有邊緣,也沒有所謂的中心。透過星系分布與譜線的觀察,產生了許多現代物理宇宙學的理論。20世紀前期,人們發現到星系具有系統性的紅移現象,表明宇宙正在;藉由宇宙微波背景輻射的觀察,表明宇宙具有起源。最後,1990年代後期的觀察,發現宇宙的膨脹速率正在加快,顯示有可能存在一股未知的巨大能量促使宇宙加速膨脹,稱做暗能量。而宇宙的大多數質量則以一種未知的形式存在著,稱做暗物質。 大爆炸理論是當前描述宇宙發展的宇宙學模型。目前主流模型,推測宇宙年齡為。大爆炸產生了空間與時間,充滿了定量的物質與能量;當宇宙開始膨脹時,物質與能量的密度也開始降低。在初期膨脹過後,宇宙開始大幅冷卻,引發第一波次原子粒子的組成,稍後則合成為簡單的原子。這些原始元素所組成的巨大星雲,藉由重力結合起來形成恆星。 目前有各種假說正競相描述著宇宙的終極命運。物理學家與哲學家仍不確定在大爆炸前是否存在任何事物;許多人拒絕推測與懷疑大爆炸之前的狀態是否可偵測。目前也存在各種多重宇宙的說法,其中部分科學家認為可能存在著與現今宇宙相似的眾多宇宙,而現今的宇宙只是其中之一。.

查看 豌豆星系和宇宙

密度

3 | symbols.

查看 豌豆星系和密度

巨米波電波望遠鏡

巨米波電波望遠鏡(Giant Metrewave Radio Telescope,GMRT),位於印度鄰近浦那,是一個米波長的電波望遠鏡陣列。它由國家電波天文物理中心操作,部分由孟買的塔塔基礎研究所運作。在它建造的時候,是世界上最大的干涉儀陣列,。.

查看 豌豆星系和巨米波電波望遠鏡

亮度

亮度(luminance)是表示人眼对发光体或被照射物体表面的发光或反射光强度实际感受的物理量,亮度和光强这两个量在一般的日常用语中往往被混淆使用。簡而言之,當任兩個物體表面在照相時被拍攝出的最終結果是一樣亮、或被眼睛看起來兩個表面一樣亮,它們就是亮度相同。 国际单位制中规定,「亮度」的符号是B,单位为尼特。.

查看 豌豆星系和亮度

廣域紅外線巡天探測衛星

廣域紅外線巡天探測衛星(Wide-field Infrared Survey Explorer, WISE)是NASA的紅外線空間望遠鏡,於2009年12月14日發射。WISE搭載口徑40公分的紅外線望遠鏡,以3至25微米的波長,六個月的時間進行巡天。WISE的紅外線偵測器比之前的紅外線巡天太空望遠鏡,如IRAS、AKARI、COBE靈敏一千倍以上。一般預期WISE一天可以發現數十顆小行星。 WISE預定將拍攝全天99%的影像,且同一區域影像至少將拍攝八幅以增加精確度。WISE將位於526公里高的太陽同步軌道並至少運行10個月。預估WISE將拍攝約150萬幅影像,平均每11秒拍攝1幅。每幅影像的視野是47角分。每個區域將被觀測過至少10次。WISE的影像將拍攝太陽系、銀河系以及宇宙深處的影像。在這些影像中將可增進我們對小行星、棕矮星和主要輻射紅外線的星系的認識。 WISE同時也是用來取代1999年3月發射失敗的廣角紅外線探測器。 2010年10月WISE的制冷劑用完,NASA Planetary division 出資進行不使用制冷劑的搜尋近地天體延伸任務,NEOWISE(Near-Earth Object WISE)。.

查看 豌豆星系和廣域紅外線巡天探測衛星

皇家天文學會月報

皇家天文學會月報(Monthly Notices of the Royal Astronomical Society,MNRAS)是世界上最主要的天文學和天文物理學領域同行評審的學術期刊之一。出刊於1827年,發表作為天文等相關領域原創研究的論文或事件通報。另外,該期刊實際上並非每月出刊,所發表的文章也不僅限於英國皇家天文學會的訊息 。.

查看 豌豆星系和皇家天文學會月報

矮星系

星系是由數十億顆恆星組成,一種比較小的星系,比我們銀河系有二千至四千億顆恆星少了許多。大麥哲倫星系,大約有300億顆恆星,當在討論在銀河系周圍的星系時,有時也會被歸類為矮星系。 在本星系群有許多的矮星系:這些小星系多數都以軌道環繞著大星系,像是銀河系、仙女座星系、和三角座星系。 銀河系有14個已知的矮星系環繞著,參考銀河系有更多的資料。 矮星系有許多不同的分類法:.

查看 豌豆星系和矮星系

禁線

禁線或禁止機制(forbidden mechanism, forbidden line)是化學上的概念,它是原子在量子力學通常的下不被接受的能量轉移發射譜線。在化學,「被禁止的」意義是在理想的對稱情況下,自然的法則下絕對不可能的。雖然這種轉換是在「技術上被禁止的」,但它們自然發生的機率並不是零。如果原子或分子被激發至受激狀態,雖然蛻變概率是極端的低,但是原子或分子仍然可能做一個允許的躍遷,經由其它另行激發狀態,進入較低的能階,而它幾乎一定會這樣做。 禁线是禁戒跃迁(Forbidden Transition)产生的谱线。禁戒跃迁是指跃迁概率很小的跃迁。通常的谱线是由偶极辐射产生,这是服从选择定则的。但四极辐射和磁偶极辐射不是绝对服从选择定则的,在适当条件下虽然违背选择定则,但也可以观察到这种跃迁,即为禁戒跃迁。相应的谱线即为禁线。.

查看 豌豆星系和禁線

等效寬度

等效寬度是測量譜線在擬定強度-波長範圍區域的措施。它是由具有相同高度的連續輻射區域組成的矩形,尋找它的寬度使矩形的面積等於譜線涵蓋的面積。這是光譜強度的特徵,主要應用在天文學。.

查看 豌豆星系和等效寬度

紫外線天文學

紫外線天文學是研究天體紫外線輻射的天文學分支學科;觀測電磁波波長大約在100到3200埃之間 。波長更短和能量更高的電磁波則屬X射線天文學和伽馬射線天文學的範圍。因為這個範圍波長的輻射無法穿透地球大氣層,必須以太空望遠鏡觀測。 天體的紫外線光譜可用來了解星際介質的化學成分、密度以及溫度;以及高溫年輕恆星的溫度與組成。星系演化的訊息也可從紫外線觀測得知。 以紫外線觀測天體的結果會與光學觀測有很大的差異。許多在光學觀測上相對溫度較低的恆星在紫外線觀測時卻顯示是高溫天體,尤其是在演化階段早期或晚期恆星。如果人眼可看到紫外線,我們所看到的夜空大部分的天體將會比現在黯淡許多。我們將能看到年輕的巨大恆星或年老恆星與星系。且許多銀河系中的分子雲和塵埃將阻擋許多天體。 目前主要的紫外線太空望遠鏡是哈伯太空望遠鏡和遠紫外分光探測器。探空火箭與太空梭也可進行紫外線觀測。.

查看 豌豆星系和紫外線天文學

纳米

纳米(符號 nm,nanometre、nanometer,字首 nano 在希臘文中的原意是「侏儒」的意思),是一个長度單位,指1米的十億分之一(10-9m)。 有時候也會見到埃米(符號 Å)這個單位,為10-10m。 1納米(nm).

查看 豌豆星系和纳米

网络论坛

網絡--,常簡稱為--,又稱--、討論版等,是種提供在線討論的程序,或由这些程序建立的以在線討論为主的网站。由Usenet在1980年之后開始流行,网络论坛大多在技术上代替了早期的电话为基础的BBS服务。虽然在技术上代替了BBS,很多论坛还保有“BBS”的名称。.

查看 豌豆星系和网络论坛

美国国家航空航天局

美國國家航空暨太空總署(National Aeronautics and Space Administration,縮寫为NASA)是美国联邦政府的一个独立机构,负责制定、实施美国的民用太空计划、與开展航空科學暨太空科學的研究。1958年7月29日,美国总统艾森豪威尔签署了《美国公共法案85-568》,创立了國家NASA航空和太空管理局,取代了其前身美國國家航空諮詢委員會(NACA)。於1958年10月開始運作。自此,美國國家航空暨太空總署負責了美國的太空探索,例如登月的阿波羅計劃,太空實驗室,以及隨後的航天飞机。自2006年2月,美国国家航空航天局的愿景是“開拓未來的太空探索,科學發現及航空研究”。美国国家航空航天局的使命是“理解并保护我们依賴生存的行星;探索宇宙,找到地球外的生命;启示我们的下一代去探索宇宙”。在太空计划之外,美国国家航空航天局还进行长期的民用以及军用航空航天研究。美国国家航空航天局被广泛认为是世界范围内太空机构中執牛耳者。美國國家航空暨太空總署透過地球觀測系統提升對地球的了解,透過太陽科學研究計劃精進太陽科學。美國國家航空暨太空總署注重於利用先進的機械任務探索太陽系中的的所有天體並利用天文觀測台及相關計劃研究天體物理學中的主題,例如大爆炸理論。美國國家航空暨太空總署與許多美國國內及國際的組織分享其研究數據。.

查看 豌豆星系和美国国家航空航天局

电离

电离(Ionization),或称电离作用、離子化,是指在(物理性的)能量作用下,原子、分子在水溶液中或熔融状态下产生自由离子的过程。 電離大致可細分為兩種類型:一種連續電離(sequential ionization)和非連續電離(Non-sequential ionization)。在古典物理學中,只有連續電離可以發生。非連續電離則違反了若干物理定律,屬於量子電離。 例如:.

查看 豌豆星系和电离

譜線

譜線是在均勻且連續的光譜上明亮或黑暗的線條,起因於光子在一個狹窄的頻率範圍內比附近的其他頻率超過或缺乏。 譜線通常是量子系統(通常是原子,但有時會是分子或原子核)和單一光子交互作用產生的。當光子的能量確實與系統內能階上的一個變化符合時(在原子的情況,通常是電子改變軌道),光子被吸收。然後,它將再自發地發射,可能是與原來相同的頻率或是階段式的,但光子發射的總能量將會與當初吸收的能量相同,而新光子的方向不會與原來的光子方向有任何關聯。 根據氣體、光源和觀測者三者的幾何關係,看見的光譜將會是吸收譜線或發射譜線。如果氣體位於光源和觀測者之間,在這個頻率上光的強度將會減弱,而再發射出來的光子絕大多數會與原來光子的方向不同,因此觀測者看見的將是吸收譜線。如果觀測者看著氣體,但是不在光源的方向上,這時觀測者將只會在狹窄的頻率上看見再發射出來的光子,因此看見的是發射譜線。 吸收譜線和發射譜線與原子有特定的關係,因此可以很容易的分辨出光線穿越過介質(通常都是氣體)的化學成分。有一些元素,像是氦、鉈、鈰等等,都是透過譜線發現的。光譜線也取決於氣體的物理狀態,因此它們被廣泛的用在恆星和其他天體的化學成分和物理狀態的辨識,而且不可能使用其他的方法完成這種工作。 同核異能位移是由於吸收光子的原子核與發射的原子核有不同的電子密度。 除了原子-光子的交互作用外,其他的機制也可以產生譜線。根據確實的物理交互作用(分子、單獨的粒子等等)所產生的光子在頻率上有廣泛的分佈,並且可以跨越從無線電波到伽馬射線,所有能觀測的電磁波頻譜。.

查看 豌豆星系和譜線

藍緻密矮星系

藍緻密矮星系 (BCD星系)是天文學上對擁有年輕、炙熱、大質量恆星組成大星團的小星系所給的名稱,而這些恆星使星系的顏色偏藍, David Darling, entry in The Internet Encyclopedia of Science.

查看 豌豆星系和藍緻密矮星系

银河系

銀河星系(古稱银河、天河、星河、天汉、銀漢等),是一個包含太陽系 的棒旋星系。直徑介於100,000光年至180,000光年。估計擁有1,000億至4,000億顆恆星,並可能有1,000億顆行星。太陽系距離銀河中心約26,000光年,在有著濃密氣體和塵埃,被稱為獵戶臂的螺旋臂的內側邊緣。在太陽的位置,公轉週期大約是2億4,000萬年。從地球看,因為是從盤狀結構的內部向外觀看,因此銀河系呈現在天球上環繞一圈的帶狀。 銀河系中最古老的恆星幾乎和宇宙本身一樣古老,因此可能是在大爆炸之後不久的黑暗時期形成的。在10,000光年內的恆星形成核球,並有著一或多根棒從核球向外輻射。最中心處被標示為強烈的電波源,可能是個超大質量黑洞,被命名為人馬座A*。在很大距離範圍內的恆星和氣體都以每秒大約220公里的速度在軌道上繞著銀河中心運行。這種恆定的速度違反了开普勒動力學,因而認為銀河系中有大量不會輻射或吸收電磁輻射的質量。這些質量被稱為暗物質。 銀河系有幾個衛星星系,它們都是本星系群的成員,並且是室女超星系團的一部分;而它又是組成拉尼亞凱亞超星系團的一部分。整個銀河系對銀河系外的參考坐標系以大約每秒600公里的速度在移動。.

查看 豌豆星系和银河系

金屬量

金屬量是天文學和物理宇宙學中的一個術語,它是指恒星之內除了氫和氦元素之外,其他的化學元素所占的比例(這個術語不同於一般所認知的“金屬”,因為在宇宙中氫和氦的組成量占了壓倒性的大數量,天文學家將所有更重的元素都視為金屬。) 。例如,碳化合物含量較多的星雲被稱為“富金屬”,但在其他的場合都不會將碳當成金屬。 一個天體的金屬量也許可以提供年齡的訊息。當宇宙剛形成時,依據大霹靂的理論,它幾乎完全都是氫原子,經由太初核合成,創造出相當大比例的氦和微量跡證的鋰。最初的恒星,被認為是第三星族星,完全不含任何金屬。這些恒星的質量是難以置信的巨大,因此在短促的恒星演化中經由核融合創造出週期表內比鐵輕的元素,然後經由壯觀的超新星將元素散佈在宇宙中。雖然,它們存在於主流的宇宙起源模型,但直至2007年,仍未發現第三星族星。下一代的恒星於第一代恒星死亡釋出的物質中创造出来,被觀測到最老的恒星,被認為是第二星族星,有非常少量的金屬;後續世代出生的恒星,因由先前世代的富含金屬的塵埃中创生出来,金屬含量越來越豐富。而當這些恒星死亡時,它們會將更豐富的金屬,經由行星狀星雲或超新星散佈到外面的雲氣中,讓新誕生的恒星有更豐富的金屬。最年輕的恒星,包括我們的太陽,含有的金屬最豐富的恒星,被認為是第一星族星。 橫跨銀河系,金屬量在銀心是最高的,並向外逐漸遞減。在群星之間的金屬量梯度隨恒星的密度變化:在星系的中心有最多的恒星,隨著時間的過去,有越來越多的金屬回到星際物質內,並且成為新恒星的原料。由相似的機制,較大的星系相較於較小的星系,也會有較高的金屬量。在兩個環繞著銀河系的小不規則星系,麥哲倫雲的例子中,大麥哲倫星系的金屬量是銀河系的40%,小麥哲倫星系的金屬量是銀河系的10%。.

查看 豌豆星系和金屬量

雙電離氧

雙電離氧 (也稱為) 是電離O2+的一條禁線,它值得注意的是以500.7奈米的綠色譜線為主,並輔以495.9的第二條譜線。濃縮了的只曾在瀰漫和行星狀星雲中發現過。因此,窄頻的雙色濾波器被用來分離501nm和496nm波長的光,對觀察這些天體是很有用的,可以用來篩選和在黑暗的背景中,當的頻率不是很明顯的時候,可以獲得更高的對比 (可能也可以減經大氣層的光汙染)。 這些發射線是1860年代在行星狀星雲的譜線中發現的。在當時,它們被認為是新的元素,並被稱為nebulium。在1927年,Ira Sprague Bowen得到現在的解釋:它們是雙電離氧的譜線。 在鷹星雲的柱狀氣體,雙電離氧的原子發射出藍光。.

查看 豌豆星系和雙電離氧

H-α

H-α,在天文學和物理學上是氫的一條具體可見的紅色發射譜線,波長為6562.8 Å。依據原子的波耳模型,電子是存在於量子化能階的軌道上繞著原子的原子核。這些能階以主量子數 n.

查看 豌豆星系和H-α

恆星形成

恆星形成是分子雲的高密度區崩潰成為球形的電漿形成恒星的過程。作為天文物理的一個分支,恆星形成的研究包括作為前導的星際物質和巨分子雲,到恆星形成過程,早期型恆星和行星形成則是直接的成果。恆星形成的理論,不僅是一顆單獨恆星的形成,還必須統計聯星和初始质量函数。.

查看 豌豆星系和恆星形成

棒旋星系

棒旋星系指的是中間具有由恆星聚集組成短棒形狀的螺旋星系。大約三分之二的螺旋星系是棒旋星系。短棒通常會影響在棒旋星系裏的恆星與星際氣體的運動,它也會影響旋臂。棒旋星系的旋臂則看似由短棒的末端湧現。而在普通的螺旋星系,恆星都是由核心直接湧出的;在星系分類法以符號SB表示。.

查看 豌豆星系和棒旋星系

欧洲空间局

欧洲空间局(Agence spatiale européenne,缩写:ASE; European Space Agency,缩写:ESA)是由欧洲数国政府組成的的國際空间探测和开发组织,总部设在法国首都巴黎。欧洲空间局负责亞利安4号和亞利安5号火箭运载火箭的研制与开发。 欧洲空间局的前身,--(European Space Research Organization,ESRO)经过1962年6月14日签署的一项协议,于1964年3月20日建立。如今它仍旧是ESA的一部分,称为欧洲空间研究与技术中心,位于荷兰诺德韦克。 ESA目前共有19个成员国:奥地利、比利时、捷克、丹麦、芬兰、法国、德国、希腊、爱尔兰、意大利、卢森堡、荷兰、挪威、葡萄牙、西班牙、瑞典、瑞士、羅馬尼亞以及英国;另外,加拿大是ESA的準成員國(Associate Member)。法国是其主要贡献者(参见法國國家太空研究中心)。目前,ESA与欧盟没有关系。歐盟轄下另有歐盟衛星中心(European Union Satellite Centre)。 ESA共有约2200名工作人员。其2011年的预算约为40亿欧元。 ESA的发射中心(欧洲航天发射中心)位于南美洲北部大西洋海岸的法属圭亚那,占地约90600平方公里,属法國國家太空研究中心领导,主要负责科学卫星、应用卫星和探空火箭的发射以及与此有关的一些运载火箭的试验和发射。由于此地靠近赤道,对火箭发射具有很大益处:纬度低,从发射点到入轨点的航程大大缩短,三子级不必二次启动;相同发射方位角的轨道倾角小,远地点变轨所需要的能量小,增加了同步轨道的有效载荷;向北和向东的海面上有一个很宽的发射弧度;人口、交通、气象条件理想等。目前,航天中心有阿里安第一、第二、第三发射场,是欧洲航天活动的主要基地。控制中心則位於德國的達姆施塔特。.

查看 豌豆星系和欧洲空间局

氧(IUPAC名:Oxygen)是一種化學元素,符號為O,原子序為8,在元素週期表中屬於氧族。氧屬於非金屬,是具有高反應性的氧化劑,能夠與大部分元素以及其他化合物形成氧化物。氧在宇宙中的總質量在所有元素中位列第三,僅居氫和氦之下。Emsley 2001, p.297在標準溫度和壓力下,兩個氧原子会自然鍵合,形成無色無味的氧氣,即雙原子氧()。氧氣是地球大氣層的主要成分之一,在體積上佔20.8%。地球地殼中近一半的質量都是由氧和氧化物所組成。 氧是細胞呼吸作用中重要的元素。在生物體中,主要有機分子,如蛋白質、核酸、碳水化合物和脂肪等,還有組成動物外殼、牙齒和骨骼的無機化合物,都含有氧原子。生物體絕大部分的質量都由含氧原子的水組成。光合作用利用陽光的能量把水和二氧化碳轉化為氧氣。氧氣的化學反應性強,容易與其他元素結合,所以大氣層中的氧氣成分只能通過生物的光合作用持續補充。臭氧()是氧元素的另一種同素異構體,能夠較好地吸收中紫外線輻射。位於高海拔的臭氧層有助阻擋紫外線,從而保護生物圈。不過,在地表上的臭氧屬於污染物,為霧霾的副產品之一。在低地球軌道高度的單原子氧足以對航天器造成腐蝕。 卡爾·威廉·舍勒於1773年或之前在烏普薩拉最早發現氧元素。約瑟夫·普利斯特里亦於1774年在威爾特郡獨立發現氧,因為其成果的發表日期較舍勒早,所以一般被譽為氧的發現者。1777年,安東萬-羅倫·德·拉瓦節進行了一系列有關氧的實驗,推翻了當時用於解釋燃燒和腐蝕的燃素說。他也提出了氧的現用IUPAC名稱「oxygen」,源自希臘語中的「ὀξύς」(oxys,尖銳,指酸)和「-γενής」(-genes,產生者)。這是因為命名之時,人們曾以為所有酸都必須含有氧。許多化學詞彙都在清末傳入中國,其中原法文元素名「oxygène」被譯為「養」,後譯為「氱」,最終演變為今天的中文名「氧」。 氧的應用包括暖氣、內燃機、鋼鐵、塑料和布料的生產、金屬氣焊和氣割、火箭推進劑、及航空器、潛艇、載人航天器和潛水所用的生命保障系統。.

查看 豌豆星系和氧

活动星系核

活动星系核(Active Galactic Nucleus,縮寫為AGN)是一个星系中央區有比普通的星系的强烈很多的光度,至少部分波段或甚至可能全部波段裡都發出很强的電磁波譜。被观察到的发射覆盖從無線電波,微波,红外线,可见光,紫外线,X射线,到伽瑪射線。光度大约在1036-1041J/s之間。容纳活动星系核的宿主星系為活躍星系。活躍星系核是這些星系明亮的核心部分,尺度通常在1光年上下,只占整個活躍星系的很小一部分。活动星系核(AGN)是在宇宙中的电磁辐射的最明亮的持久性的来源,并且因此可以被用作发现远方天体的方法;其演化的宇宙时间函数也设置了宇宙模型的制约条件。 另外,亦有研究顯示活躍星系核的能量可能源自星系碰撞。 1960年代類星體發現以來,又相繼發現了許多具有類似特徵的天體,都是系外星系,統稱為活躍星系核。 共同观测特征主要有:.

查看 豌豆星系和活动星系核

星系分類

在天文學中,星系的分類主要是根據星系的外觀在整體上呈現出的型態,分為橢圓星系、螺旋星系、或棒旋星系(閂狀星系),而且可以更進一步的的標示出各類星系的特性。例如,橢圓星系的外觀扁平度,旋渦星系的旋渦數目或棒閂的特性。這種星系分類稱為哈伯音叉圖或哈伯序列。.

查看 豌豆星系和星系分類

星系動物園

星系動物園(Galaxy Zoo)邀請公眾協助在網路上為上百萬個星系按形狀分類,是與天文學相關、由公眾成員協助科學研究的全民科學案例。2016年1月在「自然」發表的「綠豌豆」論文,是星系動物園協助學術研究取得進展的後續最新;綠豌豆星系是星系動物園志願分類員於2007年依據星系型態分類時意外發現的一類天體。 星系動物園是「」(Zooniverse)計畫的一部分。正體中文版於2013年10月推出,由中央研究院天文所人員翻譯。2014年7月,星系動物園已修訂到第7個版本。2016年網站版本再度更新。.

查看 豌豆星系和星系動物園

星系的形成和演化

在天文物理學中,有關星系形成和演化的問題有:.

查看 豌豆星系和星系的形成和演化

星暴星系

星暴星系是在比較星系的恆星形成速率時,其形成速率比大多數的星系都要高出許多的一種星系。通常在兩個星系過度靠近或發生碰撞之際,會有爆發性的恆星形成。在這種星系中,恆星形成的速率是很驚人的,如果要持續這種速率,要供應恆星形成所儲存的氣體,在遠短於星系的動力生命期內就會耗盡。基於這個原因,星爆過程被假設為短暫時期的現象,最出名的星暴星系是M82、NGC 4038/NGC 4039和IC 10。.

查看 豌豆星系和星暴星系

敏豆星系

敏豆星系 (Green Bean Galaxies,GBGs)是非常罕見的天體,它們被認為是類星體的電離回波。這些作者在紅移z.

查看 豌豆星系和敏豆星系

另见

2007年科學

众包

公众科学

星系