徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

留数定理

指数 留数定理

在复分析中,留数定理(又叫残数定理)是用来计算解析函数沿着闭曲线的路径积分的一个有力的工具,也可以用来计算实函数的积分。它是柯西积分定理和柯西积分公式的推论。.

20 关系: 卷绕数复平面奇点 (几何)实函数弧长开集傅里叶变换全纯函数留数特征函数 (概率论)莫雷拉定理複分析解析函数若尔当曲线定理虛數單位柯西分布柯西积分定理整函数拉普拉斯变换曲线积分

卷绕数

平面上的闭曲线关于某个点的卷绕数,是一个整数,它表示了曲线绕过该点的总次数。卷绕数与曲线的定向有关,如果曲线依顺时针方向绕过某个点,则卷绕数是负数。 卷绕数在代数拓扑中是基本的概念,在向量分析、复分析、几何拓扑、微分几何和物理学中也扮演了重要的角色。.

新!!: 留数定理和卷绕数 · 查看更多 »

复平面

数学中,复平面(complex plane)是用水平的实轴与垂直的虚轴建立起来的复数的几何表示。它可视为一个具有特定代数结构笛卡儿平面(实平面),一个复数的实部用沿着 x-轴的位移表示,虚部用沿着 y-轴的位移表示。 复平面有时也叫做阿尔冈平面,因为它用于阿尔冈图中。这是以让-罗贝尔·阿尔冈(1768-1822)命名的,尽管它们最先是挪威-丹麦土地测量员和数学家卡斯帕尔·韦塞尔(1745-1818)叙述的。阿尔冈图经常用来标示复平面上函数的极点与零点的位置。 复平面的想法提供了一个复数的几何解释。在加法下,它们像向量一样相加;两个复数的乘法在极坐标下的表示最简单——乘积的长度或模长是两个绝对值或模长的乘积,乘积的角度或辐角是两个角度或辐角的和。特别地,用一个模长为 1 的复数相乘即为一个旋转。.

新!!: 留数定理和复平面 · 查看更多 »

奇点 (几何)

曲線上的奇點是指曲線上參數無法光滑變化的部份。準確的定義要視曲線的種類而定。.

新!!: 留数定理和奇点 (几何) · 查看更多 »

实函数

实函数(Real function),指定义域和值域均为实数集的子集的函数。實函數的特性之一是可以在坐標平面上畫出圖形。.

新!!: 留数定理和实函数 · 查看更多 »

弧长

曲线的弧长也称曲线的长度,是曲线的特征之一。不是所有的曲线都能定义长度,能够定义长度的曲线称为可求长曲线。最早研究的曲线弧长是圆弧的长度。为了计算圆周的长度,数学家发明了用直线段近似的方法,并应用到其他的曲线上。微积分出现后,数学家开始用积分的方式计算曲线的弧长,得出了许多特殊曲线的弧长的精确表达式。.

新!!: 留数定理和弧长 · 查看更多 »

开集

開集是指不包含任何自己邊界點的集合。或者說,開集包含的任意一點的充分小的鄰域都包含在其自身中。 例如,实数线上的由不等式2规定的集合称为开区间,是开集。这时候的边界为实数轴上的点2和5,如由不等式2\leq x \leq 5,或者2规定的区间由于包含其边界,因此不能称之为开集。 开集的概念一般与拓扑概念是紧密联系着的,通常先公理化开集,然后通过其定义边界的概念。(详细请参照拓扑空间).

新!!: 留数定理和开集 · 查看更多 »

傅里叶变换

傅里叶变换(Transformation de Fourier、Fourier transform)是一种線性积分变换,用于信号在时域(或空域)和频域之间的变换,在物理学和工程学中有许多应用。因其基本思想首先由法国学者约瑟夫·傅里叶系统地提出,所以以其名字来命名以示纪念。实际上傅里叶变换就像化学分析,确定物质的基本成分;信号来自自然界,也可对其进行分析,确定其基本成分。 经傅里叶变换生成的函数 \hat f 称作原函数 f 的傅里叶变换、亦称频谱。在許多情況下,傅里叶变换是可逆的,即可通过 \hat f 得到其原函数 f。通常情况下,f 是实数函数,而 \hat f 则是复数函数,用一个复数来表示振幅和相位。 “傅里叶变换”一词既指变换操作本身(将函数 f 进行傅里叶变换),又指该操作所生成的复数函数(\hat f 是 f 的傅里叶变换)。.

新!!: 留数定理和傅里叶变换 · 查看更多 »

全纯函数

全纯函数(holomorphic function)是複分析研究的中心对象;它们是定义在複平面C的开子集上的,在複平面C中取值的,在每点上皆複可微的函数。这是比实可微强得多的条件,暗示著此函数无穷可微并可以用泰勒级数來描述。 解析函数(analytic function)一词经常可以和“全纯函数”互相交换使用,虽然前者有几个其他含义。 全纯函数有时称为正则函数。在整个複平面上都全纯的函数称为整函数(entire function)。「在一点a全纯」不仅表示在a可微,而且表示在某个中心为a的複平面的开邻域上可微。双全纯(biholomorphic)表示一个有全纯逆函数的全纯函数。.

新!!: 留数定理和全纯函数 · 查看更多 »

留数

在复分析中,留数是一个正比于一个亚纯函数某一奇点周围的路径积分的复数。(更一般地,对于任何除去离散点集之外全纯的函数 f: \mathbb \setminus \ \rightarrow \mathbb都可以计算其留数,即便是离散点集中含有本质奇点)留数可以是很容易计算的,一旦知道了留数,就可以通过留数定理来计算更复杂的路径积分。.

新!!: 留数定理和留数 · 查看更多 »

特征函数 (概率论)

在概率论中,任何随机变量的特征函数(缩写:ch.f,复数形式:ch.f's)完全定义了它的概率分布。在实直线上,它由以下公式给出,其中X是任何具有该分布的随机变量: 其中t是一个实数,i是虚数单位,E表示期望值。 用矩母函数MX(t)来表示(如果它存在),特征函数就是iX的矩母函数,或X在虚数轴上求得的矩母函数。 与矩母函数不同,特征函数总是存在。 如果FX是累积分布函数,那么特征函数由黎曼-斯蒂尔切斯积分给出: 在概率密度函数fX存在的情况下,该公式就变为: 如果X是一个向量值随机变量,我们便取自变量t为向量,tX为数量积。 R或Rn上的每一个概率分布都有特征函数,因为我们是在有限测度的空间上对一个有界函数进行积分,且对于每一个特征函数都正好有一个概率分布。 一个对称概率密度函数的特征函数(也就是满足fX(x).

新!!: 留数定理和特征函数 (概率论) · 查看更多 »

莫雷拉定理

莫雷拉定理是一个用来判断函数是否全纯的定理。 如果f是一个连续的--值函数,定义在复平面上的开集D内,且对于所有D内的闭曲线C,都满足 则f在D内是全纯的。 莫雷拉定理的假设等于是说f在D内具有原函数。 该定理的逆命题不一定成立。全纯函数在定义域内并不一定有原函数,除非加上更多条件。例如,柯西积分定理说明全纯函数沿着一条闭曲线的路径积分为零,只要函数的定义域是单连通的。.

新!!: 留数定理和莫雷拉定理 · 查看更多 »

複分析

複變分析是研究複變函數,特別是亞純函數和複變解析函數的數學理論。 研究中常用的理论、公式以及方法包括柯西积分定理、柯西积分公式、留数定理、洛朗级数展开等。複變分析的应用领域较为广泛,在其它数学分支和物理学中也起着重要的作用。包括数论、应用数学、流体力学、热力学和电动力学。.

新!!: 留数定理和複分析 · 查看更多 »

解析函数

在數學中,解析函数是局部上由收斂冪級數給出的函數。解析函數可分成實解析函數與複解析函數,兩者有類似之處,同時也有重要的差異。每种类型的解析函数都是无穷可导的,但复解析函数表现出一些一般实解析函数不成立的性质。此外在超度量域上也可以定義解析函數,這套想法在當代數論與算術代數幾何中有重要應用。一个函数是解析函数当且仅当这个函数在它定义域内的每个x0的邻域内的泰勒级数都收敛。 解析函數集有時也寫作 C^\omega。.

新!!: 留数定理和解析函数 · 查看更多 »

若尔当曲线定理

在拓扑学中,若尔当曲线是平面上的非自交环路(又称为简单闭曲线)。若尔当曲线定理说明每一条若尔当曲线都把平面分成一个“内部”区域和一个“外部”区域,且任何从一个区域到另一个区域的道路都必然在某处与环路相交。它由奥斯瓦尔德·维布伦在1905年证明。.

新!!: 留数定理和若尔当曲线定理 · 查看更多 »

虛數單位

在數學、物理及工程學裏,虛數單位標記為 i\,\!,在电机工程和相关领域中则标记为j\,,这是为了避免与电流(记为i(t)\,或i\,)混淆。虛數單位的發明使實數系統 \mathbb\,\! 能夠延伸至复数系統 \mathbb\,\! 。延伸的主要動機為有很多實係數多項式方程式無實數解。例如方程式 x^2+1.

新!!: 留数定理和虛數單位 · 查看更多 »

柯西分布

柯西分布也叫作柯西-洛伦兹分布,它是以奥古斯丁·路易·柯西与亨德里克·洛伦兹名字命名的连续概率分布,其概率密度函数为 其中x0是定义分布峰值位置的位置参数,γ是最大值一半处的一半宽度的尺度参数。 作为概率分布,通常叫作柯西分布,物理学家也将之称为洛伦兹分布或者Breit-Wigner分布。在物理学中的重要性很大一部分归因于它是描述受迫共振的微分方程的解。在光谱学中,它描述了被共振或者其它机制加宽的谱线形状。在下面的部分将使用柯西分布这个统计学术语。 x0.

新!!: 留数定理和柯西分布 · 查看更多 »

柯西积分定理

柯西积分定理(或稱柯西-古薩定理),是一个关于复平面上全纯函数的路径积分的重要定理。柯西积分定理说明,如果从一点到另一点有两个不同的路径,而函数在两个路径之间处处是全纯的,则函数的两个路径积分是相等的。另一个等价的说法是,单连通闭合区域上的全纯函数沿着任何可求长闭合曲线的积分是0.

新!!: 留数定理和柯西积分定理 · 查看更多 »

整函数

整函数(entire function)是在整个复平面上全纯的函数。典型的例子有多项式函数、指数函数、以及它们的和、积及复合函数。每一个整函数都可以表示为处处收敛的幂级数。而对数函数和平方根都不是整函数。 整函数f(z)的阶可以用上极限定义如下: 其中r是到0的距离,M(r)是\left|z\right|.

新!!: 留数定理和整函数 · 查看更多 »

拉普拉斯变换

拉普拉斯变换(Laplace transform)是应用数学中常用的一种积分变换,又名拉氏轉換,其符號為 \displaystyle\mathcal \left\。拉氏變換是一個線性變換,可將一個有引數實數 t(t \ge 0) 的函數轉換為一個引數為複數 s 的函數: 拉氏變換在大部份的應用中都是對射的,最常見的 f(t) 和 F(s) 組合常印製成表,方便查閱。拉普拉斯变换得名自法國天文學家暨數學家皮埃尔-西蒙·拉普拉斯(Pierre-Simon marquis de Laplace),他在機率論的研究中首先引入了拉氏變換。 拉氏變換和傅里叶变换有關,不過傅里叶变换將一個函數或是信號表示為許多弦波的疊加,而拉氏變換則是將一個函數表示為許多矩的疊加。拉氏變換常用來求解微分方程及積分方程。在物理及工程上常用來分析線性非時變系統,可用來分析電子電路、諧振子、光学仪器及機械設備。在這些分析中,拉氏變換可以作時域和頻域之間的轉換,在時域中輸入和輸出都是時間的函數,在頻域中輸入和輸出則是複變角頻率的函數,單位是弧度每秒。 對於一個簡單的系統,拉氏變換提供另一種系統的描述方程,可以簡化分析系統行為的時間。像時域下的線性非時變系統,在頻域下會轉換為代數方程,在時域下的捲積會變成頻域下的乘法。.

新!!: 留数定理和拉普拉斯变换 · 查看更多 »

曲线积分

在数学中,曲线积分或路徑積分是积分的一种。积分函数的取值沿的不是区间,而是特定的曲线,称为积分路径。曲线积分有很多种类,当积分路径为闭合曲线时,称为环路积分或围道积分。 在曲线积分中,被积的函数可以是标量函数或向量函数。當被積函數是純量函數時,积分的值是積分路径各点上的函数值乘上該點切向量的長度,在被积分函数是向量函数时,積分值是積分向量函数与曲线切向量的內積。在函數是純量函數的情形下,可以把切向量的絕對值(長度)看成此曲線把該點附近定義域的極小區間,在對應域內拉長了切向量絕對值的長度,這也是曲线积分与一般区间上的积分的主要不同点。物理学中的许多簡潔公式(例如W.

新!!: 留数定理和曲线积分 · 查看更多 »

传出传入
嘿!我们在Facebook上吧! »